class='head no_bottom_margin' id='sec1title'>Int'/> Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21
【2h】

Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21

机译:神经元线粒体功能障碍激活综合应激反应诱导成纤维细胞生长因子21

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionIn neurons, mitochondrial fission, which in mammals depends mainly on dynamin-related protein Drp1, facilitates both axonal mitochondrial transport and mitophagic elimination (, , , ). Not surprisingly, Drp1 is therefore required for brain development and mature neuronal function (, , , , , ). In several clinically and pathologically distinct neurodegenerative diseases, mitochondrial morphology is disrupted (reviewed by ), substantiating the link among mitochondrial dynamics, function, and brain pathophysiology. Given this, brain mitochondrial dysfunction could represent an important marker to identify subjects at risk of developing neurodegenerative disorders, before neurological symptoms manifest; however, no surrogate marker of brain mitochondrial dysfunction is available.Mitochondria of peripheral organs (e.g., liver and muscle) can convey disruption of their function by mounting cell-wide stress responses (, , , , href="#bib27" rid="bib27" class=" bibr popnode">Kim et al., 2013a, href="#bib45" rid="bib45" class=" bibr popnode">Touvier et al., 2015, href="#bib47" rid="bib47" class=" bibr popnode">Tyynismaa et al., 2010). A common trait of these models is the expression, causally linked to mitochondrial dysfunction, of the metabolic cytokine fibroblast growth factor 21 (Fgf21). This cytokine exerts a plethora of tissue-specific effects and is subject to complex pharmacology and pharmacokinetics, aspects of which continue to be matter of debate (reviewed by href="#bib25" rid="bib25" class=" bibr popnode">Kharitonenkov and DiMarchi, 2017). In addition to being canonically produced by liver and white adipose tissue (WAT) in response to starvation, Fgf21 can be secreted by other organs, such as pancreas and brown adipose tissue (href="#bib11" rid="bib11" class=" bibr popnode">Degirolamo et al., 2016, href="#bib15" rid="bib15" class=" bibr popnode">Fisher and Maratos-Flier, 2016). Moreover, Fgf21 has been established as a marker of mitochondrial myopathies (href="#bib43" rid="bib43" class=" bibr popnode">Suomalainen et al., 2011, href="#bib44" rid="bib44" class=" bibr popnode">Tezze et al., 2017). Whether Fgf21 is also produced by the CNS in response to mitochondrial dysfunction is unknown. Here we capitalize on our previously generated mouse model of inducible mitochondrial fission ablation in mature forebrain neurons (href="#bib35" rid="bib35" class=" bibr popnode">Oettinghaus et al., 2016), as well as on bona fide mouse models of neurodegeneration, to demonstrate that various forms of neuronal cell stress, including mitochondrial dysfunction, are sensed by the integrated stress response (ISR). In each of these models, ISR activation leads to neuron-specific Fgf21 expression, highlighting the potential of this cytokine as biomarker for neurodegenerative conditions.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在神经元中,线粒体裂变(在哺乳动物中主要取决于与动力有关的蛋白质Drp1,促进轴突线粒体运输和线粒体消除(,,,)。因此,毫不奇怪,Drp1是大脑发育和成熟的神经元功能所必需的。在几种临床和病理学上不同的神经退行性疾病中,线粒体形态被破坏(由审查),证实了线粒体动力学,功能和脑病理生理之间的联系。鉴于此,脑线粒体功能障碍可能是重要的标志物,可以在神经症状出现之前识别出有发生神经退行性疾病风险的受试者。然而,尚无脑线粒体功能障碍的替代标记。外围器官(例如,肝脏和肌肉)的线粒体可以通过引起全细胞应激反应(、、、、、 href =“#bib27”摆脱=“ bib27” class =“ bibr popnode”> Kim等人,2013a ,href="#bib45" rid="bib45" class=" bibr popnode"> Touvier等人,2015 ,href="#bib47" rid="bib47" class=" bibr popnode"> Tyynismaa等,2010 )。这些模型的一个共同特征是代谢性细胞因子成纤维细胞生长因子21(Fgf21)的表达(与线粒体功能障碍有因果关系)。这种细胞因子发挥了多种组织特异性作用,并受到复杂的药理学和药代动力学的影响,这方面的争论仍然存在(由href =“#bib25” rid =“ bib25” class =“ bibr popnode审查”) > Kharitonenkov和DiMarchi,2017年)。 Fgf21除了由肝脏和白色脂肪组织(WAT)响应饥饿而正常产生外,还可以由其他器官分泌,例如胰腺和棕色脂肪组织(href =“#bib11” rid =“ bib11”类=“ bibr popnode”> Degirolamo等人,2016 ,href="#bib15" rid="bib15" class=" bibr popnode"> Fisher and Maratos-Flier,2016 )。此外,Fgf21已被确立为线粒体肌病的标志物(href="#bib43" rid="bib43" class=" bibr popnode"> Suomalainen et al。,2011 ,href =“# bib44“ rid =” bib44“ class =” bibr popnode“> Tezze等人,2017 )。中枢神经系统是否也响应线粒体功能障碍而产生Fgf21。在这里,我们利用我们先前生成的成熟前脑神经元的诱导型线粒体裂变小鼠模型(href="#bib35" rid="bib35" class=" bibr popnode"> Oettinghaus et al。,2016 ) ,以及在真正的神经退行性小鼠模型上,证明了综合应激反应(ISR)可以感知各种形式的神经元细胞应激,包括线粒体功能障碍。在这些模型的每一个中,ISR激活都会导致神经元特异性Fgf21表达,从而突出了这种细胞因子作为神经退行性疾病生物标志物的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号