首页> 中文期刊> 《上海海事大学学报》 >基于DE-SVM的船舶航迹预测模型

基于DE-SVM的船舶航迹预测模型

         

摘要

cqvip:为提高船舶航迹预测精度,解决准确建模难度大和神经网络易陷入局部最优的问题,考虑实时获取目标船AIS数据较少的特点,提出一种基于支持向量机(support vector machine,SVM)的航迹预测模型。选择AIS数据中的航速、航向和船舶经纬度作为样本特征变量;采用小波阈值去噪的方法处理训练数据;采用差分进化(differential evolution,DE)算法对模型内部参数寻优以提高模型收敛速度和预测精度。选取天津港实船某段航迹的AIS数据,比较基于DE-SVM与基于BP神经网络的航迹预测模型的仿真结果。结果表明,基于DE-SVM的航迹预测模型具有更高的预测精度,简单、可行、高效,且耗时少。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号