首页> 中文期刊> 《化工进展》 >乙醇胺脱氨脱水工艺的研究

乙醇胺脱氨脱水工艺的研究

         

摘要

The ammonia content has a significant effect on consumption of energy in production of ethanolamine (EA). Heat integration is needed to reduce energy consumption in the process of ammonia and water removal. At the same time,operating temperature limitation should be considered because EA is a heat sensitive material. This paper studied variation of color numbers of the EA mixtures with or without water with the changing temperature and residence time. It was determined that 160 ℃ was the upper limit of operating temperature limitation in the process of ammonia and water removal. For different ammonia contents,the non-integrated energy consumptions and column operating conditions of process were compared. The results showed the temperature of de-ammonia column was 160.2 ℃ slightly over the temperature limitation. Therefore,the operation of ammonia removal would need to be adjusted. Three types of heat integration schemes were studied under different ammonia contents. The results showed that,the integration solutions of ammonia and water removal were different for different ammonia contents due to the operating temperature limitation.%乙醇胺生产中的氨水浓度对能耗有很大影响,需要对脱氨脱水工艺进行能量集成以降低能耗,同时乙醇胺又是热敏性物质,操作温度限制成为能量集成时要考虑的因素。本文实验研究了含水和不含水乙醇胺混合物的色号随温度、停留时间的变化规律,确定160℃为脱氨脱水工艺的操作温度上限。在不同氨水浓度下,对未进行能量集成的能耗和各塔操作条件进行了比较,结果表明当氨水浓度达到45%时,脱氨塔底温度为160.2℃,已大于操作温度上限,需要改变脱氨操作才能满足温度限制。通过提高脱水塔操作压力,使其塔顶蒸汽为脱氨塔和真空脱水塔提供能量,针对不同氨水浓度,对3种热量集成方案进行了研究。结果表明,由于受到操作温度限制,不同氨水浓度的脱氨脱水工艺需要采取不同的集成方案。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号