首页> 外文学位 >Junction Engineering and Device Design for Silicon Heterojunction and Interdigitated Back Contact Silicon Heterojunction Solar Cells
【24h】

Junction Engineering and Device Design for Silicon Heterojunction and Interdigitated Back Contact Silicon Heterojunction Solar Cells

机译:硅异质结和叉指背接触式硅异质结太阳能电池的结工程和器件设计

获取原文
获取原文并翻译 | 示例

摘要

The interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell currently holds the record conversion efficiency for non-concentrated single junction silicon solar cells with an efficiency of 26.7%. The aim of this dissertation is to understand the fundamental loss mechanisms of IBC-SHJ related to the rear surface design and to minimize these losses utilizing advanced numerical simulations, novel test structure characterizations and scalable device fabrication processes. The findings in this dissertation will serve as guidance for the industry-oriented R & D efforts to make IBC-SHJ mass-production cost-effective without compromising the performance. The outcomes of this dissertation are four-fold: First, a lifetime simulation tool based on the extended Shockley-Read-Hall (SRH) recombination formalism has been developed as guidance to investigate c-Si surface passivation. Plasma enhanced chemical vapor deposition (PECVD) conditions of intrinsic hydrogenated amorphous silicon (i.a-Si:H) films were explored for passivating the commercial n-type c-Si (n.c-Si) wafer surfaces and correlation to the properties of films was established through material characterizations. Passivated lifetime > 1ms with implied open circuit voltage (iVOC) > 700 mV has been achieved. The trade-off between front surface absorption loss and rear surface emitter junction valence band offset effect was simultaneously accommodated with an optimized i.a-Si:H layer.;Second, an advanced two-dimensional (2-D) IBC-SHJ simulation model has been developed to investigate the IBC-SHJ device rear surface design of three regions: emitter contact, base contact and the non-metallized gap region between them. Simulations suggested that IBC-SHJ performance is more sensitive to the surface passivation quality in emitter and gap regions than the base region. The trade-offs between VOC and FF were diagnosed by experimentally varying p-type a-Si:H layers (p.a-Si:H) and their application on SHJ test structures. A graded high-low p.a-Si:H emitter structure was established, demonstrating IBC-SHJ solar cell efficiency of 20.2% fabricated by complex three-step photolithography (PL) process.;Thirdly, to minimize the lateral transport loss over the rear surface gap region, four different passivation structures were investigated utilizing potential industrially-scalable process. Interface defect density (D it) and interface charge density (Qpass) for the four structures were extracted utilizing a lifetime simulator. The 2-D IBC-SHJ device simulations indicated that > 21.5% conversion efficiency is achievable on devices fabricated with our current process. However, experimental results of IBC-SHJ fabricated with simplified processes suggested that a gap passivation structure which induces inversion at n.c-Si surface should be avoided.;Fourth, to validate the inversion layer effect on IBC-SHJ device, a novel three-terminal rear SHJ test structure was invented. This structure enabled an external DC bias to be applied onto one of the rear contacts for voltage-modulated laser-beam-induced-current (VM-LBIC) measurements. Additionally, device performance was analyzed before and after intentional localized laser damage to base region, which confirmed the detrimental surface inversion effect if any localized high surface recombination region exists within a diffusion length distance from emitter region.;Based on these results, for a commercially viable IBC-SHJ fabrication on n-type c-Si wafer, the following recommendations can be made: 1) Avoid passivation scheme with negative charge that might form inversion layer at the rear surface; 2) Minimize area of localized defective regions with high surface recombination velocity (SRV) and; 3) Low resolution alignment patterning processes which yield gap widths ≥ 100 microm are acceptable if the gap region of IBC-SHJ has an SRV ≤ 5 cm/s.
机译:叉指式背接触硅异质结(IBC-SHJ)太阳能电池目前以26.7%的效率保持着非浓缩单结硅太阳能电池的创纪录转换效率。本文的目的是了解与后表面设计有关的IBC-SHJ的基本损耗机理,并利用先进的数值模拟,新颖的测试结构表征和可扩展的器件制造工艺将这些损耗降至最低。本文的研究结果将为以行业为导向的研发工作提供指导,以使IBC-SHJ在不影响性能的情况下具有成本效益。本文的研究结果有四个方面:首先,开发了基于扩展的Shockley-Read-Hall(SRH)重组形式的寿命模拟工具,作为研究c-Si表面钝化的指南。探索了本征氢化非晶硅(ia-Si:H)膜的等离子体增强化学气相沉积(PECVD)条件,以钝化商用n型c-Si(nc-Si)晶片表面,并建立了与膜性能的相关性通过材料表征。隐含的开路电压(iVOC)> 700 mV时,钝化寿命> 1ms。优化的ia-Si:H层同时适应了前表面吸收损耗与后表面发射极结价带偏移效应之间的权衡。第二,先进的二维(2-D)IBC-SHJ模拟模型具有被开发来研究IBC-SHJ器件的后表面设计的三个区域:发射极接触,基极接触和它们之间的非金属间隙区域。仿真表明,IBC-SHJ性能对发射极和间隙区域的表面钝化质量比基极区域更敏感。通过实验性地改变p型a-Si:H层(p.a-Si:H)及其在SHJ测试结构中的应用,可以诊断VOC和FF之间的平衡。建立了分级的高低Pa-Si:H发射极结构,表明通过复杂的三步光刻(PL)工艺制造的IBC-SHJ太阳能电池效率为20.2%;第三,最大程度地减少了背面的横向传输损耗间隙区域,利用潜在的工业可扩展工艺研究了四种不同的钝化结构。利用寿命模拟器提取了四个结构的界面缺陷密度(D it)和界面电荷密度(Qpass)。二维IBC-SHJ器件仿真表明,采用我们当前工艺制造的器件可实现> 21.5%的转换效率。然而,采用简化工艺制备的IBC-SHJ的实验结果表明,应避免在nc-Si表面引起反型的间隙钝化结构。第四,为验证反型层对新型三端子IBC-SHJ器件的影响发明了后SHJ测试结构。这种结构使得可以将外部直流偏置施加到后触点之一上,以进行电压调制的激光束感应电流(VM-LBIC)测量。此外,在有意对基极区域进行局部激光损伤之前和之后,对器件性能进行了分析,这证实了如果在距发射极区域的扩散长度范围内存在任何局部高表面复合区域,则将产生有害的表面反转效应。在n型c-Si晶片上进行可行的IBC-SHJ制造时,可以提出以下建议:1)避免使用带有负电荷的钝化方案,该方案可能在背面形成反型层; 2)以高表面重组速度(SRV)最小化局部缺陷区域的面积;以及3)如果IBC-SHJ的间隙区域的SRV≤5 cm / s,则产生间隙宽度≥100微米的低分辨率对准构图工艺是可以接受的。

著录项

  • 作者

    Zhang, Lei.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 300 p.
  • 总页数 300
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号