首页> 外文会议>Progress in Electromagnetics Research Symposium >Graphene-based Transparent Nano-heater for Thermally-tuning Silicon Nanophotonic Integrated Devices
【24h】

Graphene-based Transparent Nano-heater for Thermally-tuning Silicon Nanophotonic Integrated Devices

机译:基于石墨烯的透明纳米加热器,用于热调谐硅纳米光电综合装置

获取原文

摘要

For the traditional metal heaters used for SOI (silicon-on-insulator)-nanowire devices, a thick SiO2 upper-cladding layer is usually needed between the metal heater and the silicon core to isolate metal absorption, which makes the thermal tuning be with low response speed, low heating efficiency, and low maximal temperature. In this paper, we propose and demonstrate a graphene-based transparent nano-heater for SOI nanowires. The present transparent graphene nano-heater is designed to contact directly with the silicon core of an SOI nanowire by utilizing the transparency of graphene. The lack of the thick SiO2 upper-cladding layer between the heater and the core region helps make fast thermally-tuning nanophotonic integrated devices. It is also beneficial to improve the heating efficiency because the heating volume is shrunk significantly. The graphene nano-heater is designed optimally to avoid any significant excess loss for the guided modes in the SOI nanowires. For example, the theoretical propagation losses of TE- and TM-polarization modes of a 600 nm-wide SOI nanowire with a 100 nm-wide graphene nano-heater are as low as~ 0.005 dB/μm and~ 0.013 dB/μm respectively. With this graphene-based transparent nano-heater, we present a thermally-tuning silicon Mach-Zehnder interferometer (MZI). The power consumption to have π phase-shift is~ 5.2 mW and~ 5.7mW for TE- and TM-polarization modes, respectively. The theoretical response time is~ 4.4 ps, which is about twice faster than that for the case of using a traditional metal heater. In addition, the temperature of the silicon core is almost the same as that of graphene nano-heaters. In contrast, for the case of traditional metal heaters, the silicon core has much lower temperature than the metal heater while the metal heater has a limited maximal operation-temperature. This indicates that one can achieve higher achievable temperature for the silicon core with the present graphene nano-heater than the traditional metal heater. Graphene can also be used as a heat conductor (other than heater) by utilizing its high thermal conductivity of up to 5300 W/mK. The excellent thermal properties of graphene make it very useful to enable efficient thermally-tuning nanophotonic integrated devices including optical switches, optical filters, etc..
机译:对于用于SOI的传统金属加热器(绝缘体上硅) - 纳瓦风机装置,金属加热器和硅芯之间通常需要厚的SiO2上包层,以隔离金属吸收,这使得热调节具有低电平响应速度,低加热效率和低的最大温度。在本文中,我们提出并展示了用于SOI纳米线的基于石墨烯的透明纳米加热器。本发明的透明石墨烯纳米加热器设计成通过利用石墨烯的透明度与SOI纳米线的硅芯直接接触。加热器和芯区域之间缺乏厚的SiO2上包层层有助于制造快速的热调节纳米光电集成装置。提高加热效率也是有益的,因为加热体积显着缩小。石墨烯纳米加热器最佳地设计,以避免SOI纳米线中的引导模式的任何显着的过度损失。例如,具有100nm宽的石墨烯纳米加热器的600nm宽的SOI纳米线的TE和TM偏振模式的理论传播损失分别低至0.005dB /μm和〜0.013dB /μm。利用这种基于石墨烯的透明纳米加热器,我们提供了一种热调节硅Mach-Zehnder干涉仪(MZI)。功耗分别具有π相移的功耗分别为TE和TM偏振模式为5.2mW和〜5.7mW。理论响应时间为〜4.4 ps,比使用传统金属加热器的情况快两倍。另外,硅芯的温度与石墨烯纳米加热器的温度几乎相同。相反,对于传统金属加热器的情况,硅芯的温度远低于金属加热器,而金属加热器的最大操作温度有限。这表明,对于与传统的金属加热器具有本发明的石墨烯纳米加热器,可以实现硅芯的更高可实现的温度。石墨烯也可以通过利用高达5300W / MK的高导热率作为热导体(除加热器)。石墨烯的出色热性能使得能够有效的热调节纳米光电集成装置非常有用,包括光开关,光学过滤器等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号