首页> 外文会议>American Institute of Chemical Engineers Annual Meeting >Understanding Nanoparticle Diffusion and Exploring Interfacial Nanorheology using Molecular Dynamics Simulations
【24h】

Understanding Nanoparticle Diffusion and Exploring Interfacial Nanorheology using Molecular Dynamics Simulations

机译:用分子动力学模拟了解纳米粒子扩散和探索界面纳米学

获取原文

摘要

Since Einstein's famous publication[1] on Brownian motion, it is well-known that for a spherical particle larger than the solvent molecules, the diffusion of the particle in a low- viscosity medium can be predicted by the Stokes-Einstein (SE) equation: where D is the diffusion constant, is Boltzmann's constant, T is the absolute temperature, is the viscosity of the fluid, and a is the particle's radius. However, the motion of the particle suspended in a complex fluid can be very different due to the viscoelastic property of the complex fluid. Another important remaining unanswered question is whether or not the SE equation is applicable to the diffusion of nanoparticles. For example, Tuteja et al [2] reported that cadmium selenide nanoparticles (hydrodynamic radius of 4.7 nm) diffuse approximately 200 times faster in a polystyrene melt than prediction from the SE equation by using X-ray photon correlation spectroscopy (XPCS). Understanding nanoparticle diffusion is important due to the tremendous applications of nanoparticles and “any study targeting the spatial assembly of nanostructures requires an understanding of the nanoparticle dynamics to delineate the kinetics” [2].
机译:由于爱因斯坦着名的出版物[1]在布朗运动上,众所周知,对于大于溶剂分子的球形颗粒,可以通过斯托克斯 - 爱因斯坦(SE)方程来预测颗粒在低粘度介质中的扩散:如果d是扩散常数,则玻尔兹曼的常数,t是绝对温度,是流体的粘度,A是颗粒的半径。然而,由于复杂流体的粘弹性,悬浮在复杂流体中的颗粒的运动可以非常不同。剩下的另一个重要的未答复问题是SE方程是否适用于纳米颗粒的扩散。例如,Tuteja等[2]报道,通过使用X射线光子相关光谱(XPC),甲硒酰胺纳米粒子(水动力半径为4.7nm)比来自SE方程的预测,在聚苯乙烯熔体中弥散约200倍。由于纳米颗粒的巨大应用和靶向纳米结构的空间组件的任何研究需要了解纳米粒子动力学来描绘动力学,因此了解纳米粒子扩散是重要的。[2]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号