您现在的位置: 首页> 研究主题> 析氧反应

析氧反应

析氧反应的相关文献在1989年到2022年内共计406篇,主要集中在化学、化学工业、一般工业技术 等领域,其中期刊论文271篇、会议论文5篇、专利文献279895篇;相关期刊121种,包括常熟理工学院学报、聊城大学学报(自然科学版)、材料导报等; 相关会议5种,包括2011金属制品行业技术信息交流会、第二十七届全国化学与物理电源学术年会、化学与物理电源学术年会等;析氧反应的相关文献由1415位作者贡献,包括包维维、周嵬、张伟等。

析氧反应—发文量

期刊论文>

论文:271 占比:0.10%

会议论文>

论文:5 占比:0.00%

专利文献>

论文:279895 占比:99.90%

总计:280171篇

析氧反应—发文趋势图

析氧反应

-研究学者

  • 包维维
  • 周嵬
  • 张伟
  • 曹睿
  • 朱印龙
  • 杨广明
  • 梁凤丽
  • 艾桃桃
  • 邵宗平
  • 乔辰
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • Jafar Hussain Shah; 谢起贤; 匡智崇; 格日乐; 周雯慧; 刘朵绒; Alexandre I.Rykov; 李旭宁; 罗景山; 王军虎
    • 摘要: 近年来,析氧反应(oxygen evolution reaction)中针对高效且具有成本效益的电催化剂开发一直是构筑有效利用可再生能源存储系统和水分解生产清洁氢能燃料的重大障碍。OER过程涉及四电子、四质子耦合并形成氧-氧(O-O)键,因此动力学上进程缓慢。为提升其在水分解产氢及二氧化碳还原反应中的应用,需要开发高效催化剂,降低OER过电位,以减轻能量转换过程中固有的能量损失。研究表明,IrO;和RuO;具有较低析氧过电位,但储量低、价格昂贵,大大限制了其在析氧反应中的大规模应用。而Ni-Fe基析氧催化剂在碱性水分解反应中展现了优异的性能,其在水分解过程中的催化机制仍有待进一步研究。为了解决Ni-Fe基催化剂在析氧反应过程中反应位点及催化反应机制等关键问题,迫切需要更先进的原位技术来准确表征,原位追踪催化剂形态变化与电解质/电极之间的界面相互作用的影响。光谱与电化学结合的原位技术可以监测析氧反应过程催化剂自身的变化。目前,已有大量原位光谱技术与电化学进行结合,揭示Ni-Fe基催化剂在OER过程中的反应机理及活性位点,包括原位表面增强拉曼光谱、原位同步辐射X射线吸收光谱、原位紫外-可见光谱、原位扫描电化学显微镜及原位穆斯堡尔光谱等。其中,原位拉曼技术可以观察Ni-Fe催化剂的振动,可以在电解液中施加测试电压条件下监测电化学反应过程中的中间体,从而提供实时反应信息,有助于追踪电化学驱动反应是如何发生的。原位同步辐射技术可以研究OER过程中Ni-Fe催化剂材料的电子结构和局部几何结构的信息,但目前的研究中更多的是探究Ni的价态变化,对Fe的研究信息较少。原位紫外-可见光谱也主要是针对Ni(OH);的变化展开研究,逐渐提高施加电位,Ni(OH);会向着Ni OOH逐渐变化,紫外-可见技术可以追踪Ni-Fe基电催化剂中的金属氧化过程。众多电化学原位光谱技术中,^(57)Fe穆斯堡尔谱因具有超高的能量分辨率,是确定催化剂相结构、鉴定活性位点、阐明催化机理以及确定催化活性与催化剂配位结构之间关系的最佳手段。此外,原位穆斯堡尔光谱技术基于原子核和核外电子的超精细相互作用而给出的同质异能移、四极矩分裂以及有效磁场等针对催化剂中的Fe位点的氧化态、电子自旋构型、对称性和磁性信息进行研究,为Ni-Fe基催化剂在析氧反应中的应用提供强有力的支持。1957年,德国科学家鲁道夫·路德维希·穆斯堡尔(Rudolf Ludwig M?ssbauer)在其27岁时,发现作为晶格谐振子的原子在发射或吸收γ射线时以一定的概率不会改变它们的量子力学状态,而这一γ射线的核共振吸收现象于1961年获得诺贝尔物理学奖,不久后被命名为穆斯堡尔效应。穆斯堡尔效应是来自于无反冲的γ射线吸收和发射的核共振现象,能量E;处于激发态的原子核(Z质子和N中子)通过产生能量为E;的γ射线跃迁到能量为E;的基态,γ射线可能会被处于基态的另一个相同类型的原子核(相同的Z和N)吸收,从而转变为能量E;的激发态。只有当发射线和吸收线足够重叠时,才能看到共振吸收。原位穆斯堡尔谱在Ni-Fe催化剂析氧反应中应用,首先需要搭建;Fe穆斯堡尔谱仪与电化学工作站联用。标准的穆斯堡尔光谱仪主要由放射源(通常是;Co在Rh或Pd金属基质中用于;Fe穆斯堡尔光谱)、速度传感器、速度校准装置、波形发生器和同步器、γ射线检测系统、多通道分析仪、计算机,并且可选配低温恒温器或高温烘箱,以控制测量过程处于适宜温度。实际测试过程中,穆斯堡尔谱可以通过速度扫描方法生成,利用移动驱动器或速度传感器以特定速度重复移动源或样品(所谓的多普勒运动),同时γ射线连续传输或发射穿过样品并计数在同步通道上。获得穆斯堡尔谱图后,基于穆斯堡尔谱数据库(https://medc.dicp.ac.cn/,由中国科学院大连化学研究所穆斯堡尔效应数据中心从全世界收集的穆斯堡尔谱样品数据),对;Fe穆斯堡尔谱进行分析拟合,对含Fe基材料的物相、价态、自旋态和配位结构进行归因和分析。数据分析拟合主要利用Moss Winn数据分析和拟合软件(http://www.mosswinn.com/)。以Ni-Fe氢氧化物催化剂为例,对于原始催化剂,其仅存在一种Fe^(2+)物种,当该催化剂参与OER过程后,可能会存在Fe^(2+),在双峰基础上,拟合结果中则会出现肩峰向负侧移动现象,可以确认高价Fe的存在,例如Fe^(2+)。为充分证明高价Fe的存在,对于Ni-Fe基催化剂的穆斯堡尔谱测试,还需在工况条件下进行原位测试。20世纪80年代后期,非贵金属氧化物和氢氧化物代替贵金属氧化物阳极催化剂的电解水研究开始受到关注。Corrigan等通过将Fe杂质引入Ni O阳极,测试过程中发现OER活性会增加,但后续的研究中对于Fe究竟如何改变Ni基催化剂的OER性能仍旧不清晰。尔后,原位穆斯堡尔谱的引入逐渐揭开Fe在Ni-Fe电催化水分解析氧反应中的作用。为提高测试准确性并保证穆斯堡尔谱信号的稳定,本实验室对原位穆斯堡尔谱装置做了开发和改进。主要包括三部分:(1)穆斯堡尔光谱仪,(2)电化学工作站,以及(3)自主设计的原位OER电化学反应池。在我们的实验室中,使用了具有14.4 ke V级γ射线的单线;Fe穆斯堡尔谱放射源;Co(Rh),可以减少电解液中的信号衰减并获得令人满意的信噪比,附带CHI660E电化学工作站。对于常规的OER测试,在室温298 K条件下进行测试,测试前首先用α-Fe对穆斯堡尔谱仪进行多普勒速度校准,在进行原位穆斯堡尔谱-OER实验之前,电解液用氮气或氩气饱和以去除溶解的氧气。为了保证测试信号的准确性,实验中所使用的电解池不含任何Fe杂质,因此采用了Teflon材料。为避免测试过程中产生的O;气泡对信号产生干扰,可以采用蠕动泵循环电解液,并且保证测试过程中局部的微反应环境的一致性。对于普通OER测试,仅需要少量催化剂,但对于原位;Fe穆斯堡尔谱测试,只有保证Ni-Fe催化剂中;Fe含量充足的条件下,才可以获得高质量信号。但OER过程中,不建议催化剂载量过高,催化过程中主要是表面催化剂在反应,当样品过厚时,深层样品无法参与析氧反应过程,可能会有部分Fe仍旧维持Fe^(2+)状态。通常,对于常规;Fe穆斯堡尔光谱测量的催化剂,若在制备中使用普通Fe源,则需要Fe含量在5~10 mg·cm^(-2),这其中仅有~2.2%的自然丰度;Fe同位素,需要长时间监测才可以采集到信号。为保证实验的顺利进行,可以在样品制备过程中直接使用;Fe源,方便快捷采集高质量信号。为了保证样品测试的准确性,在OER开始前,我们可以在同一电解液中,在开路电位(OCP)下,对其进行测试,这一原始样品的测试可与后续施加电位的Ni-Fe催化剂测试结果进行对比。有外加电压测试时,需要保证催化剂处于稳定状态下进行测试,整个测试过程中保持电流密度稳定,这不仅可以保证催化剂的稳定性,还有助于确定催化剂的真实结构。利用原位;Fe穆斯堡尔谱,我们对通过Ni-Fe普鲁士蓝类似物原位拓扑转换获得的Ni-Fe羟基氧化物电催化剂进行了测试。基于原位拉曼技术,我们发现在阳极电位下,Ni-Fe催化剂中α-Ni(OH);相会不可逆转变为γ-Ni OOH。原位;Fe穆斯堡尔谱测试结果表明,在较低的施加电位(例如1.22 V和1.32 V vs.RHE)下,Fe在NiFe^(2+)-O;H;中仅处于+3氧化态,其光谱结果与开路电位下NiFe^(2+)-O;H;谱图相似,其中只有一个双峰,两个峰的强度相等,可归因于高自旋Fe^(2+)物种。但随着外加电位增加并达到1.37 V,两个峰的强度开始变得不相等,开始出现一个小的肩峰,其同质异能移(δ)值约为-0.25 mm·s^(-1),可以归属为Fe^(2+)。随着电压的逐渐增加,催化剂中的Fe^(2+)含量逐渐增加。在OER过程中,施加电位1.42 V vs.RHE时,Fe^(2+)含量~12%。当施加的电势达到1.57 V时,催化剂中Fe^(2+)的含量进一步增加到约40%。这一实例充分展现了原位;Fe穆斯堡尔谱与Ni-Fe催化OER过程的应用,也体现了NiFe^(2+)-O;H;催化剂原位产生的Fe^(2+)物种的量与其水氧化反应性能呈正相关,进一步加深了对Ni-Fe水氧化催化机理的理解。Ni-Fe基催化剂因其价格低廉,电催化析氧性能优异,因此成为碱性水分解析氧过程的理想候选者。虽然Ni-Fe基电催化剂表现出优异的OER活性,但缺乏长期稳定性阻碍了其在商业中的应用。因此,充分了解Ni-Fe催化剂的衰减机理,包括形态、组成、晶体结构和活性位点数量的变化,对于设计稳定和高效Ni-Fe催化材料非常重要,充分了解Ni-Fe催化剂在OER过程中的电子结构及其与析氧反应中间体的相互作用尤为重要。原位拉曼及原位紫外-可见光谱可以对Ni-Fe催化剂中的Ni(OH);到NiOOH的变化进行深入探究,而原位;Fe穆斯堡尔谱测试则可以揭示Ni-Fe基催化剂中Fe的电子环境及其电子的、结构的和磁性的变化。穆斯堡尔光谱为研究Ni-Fe催化剂中Fe的局部电子结构、局部配位、键合和氧化态的提供了强大技术支撑。最近,穆斯堡尔光谱在电催化领域获得了越来越多的关注,它对于检测不同铁基催化材料中的主要活性位点有着重要作用。
    • 韩杨兵; 邓建平; 李雪; 王晶斌; 邵庄; 李涛
    • 摘要: 析氧反应是水分解反应中的一个重要反应,而开发具有低成本高效率的催化剂对于非贵金属催化剂的实际应用至关重要.采用水热法制备了生长在泡沫镍上的三维花瓣状NiFe-LDH/NF、CoFe-LDH/NF纳米片,其层状多孔的泡沫镍为层状双氢氧化物提供了较大的电化学活性表面积和丰富的电化学反应活性位点,而Ni^(2+)与Fe^(3+)之间的协同作用优化了制备的催化剂的电子结构,进一步提高了其析氧反应活性.实验结果表明,在碱性溶液中,NiFe-LDH/NF和CoFe-LDH/NF比其相应的单金属化合物具有更强的电化学活性;在电流密度为20 mA/cm^(2)时,NiFe-LDH/NF的过电位仅为180 mV,其Tafel斜率为47.4 mV/dec,优于大多数非贵金属催化剂;NiFe-LDH/NF在电化学耐久性测试中表现出了优异的稳定性和耐久性,在0.8 V的阶跃电位下持续电解36000 s,其电流密度为63 mA/cm^(2),且无明显衰减.
    • 鲁利梅; 张以河; 陈振胜; 冯峰; 滕凯旋; 张舒婷; 庄佳琳; 安琪
    • 摘要: 电催化水分解制氢能够减少化石燃料的消耗,克服可再生太阳能和风能间歇性的缺点,在能源转换技术中具有巨大的应用前景,并受到研究人员的广泛关注.过渡金属基材料是最有前途的非贵金属电解水催化剂.人们致力于通过各种方法,如掺杂、结构工程或生成缺陷,以提高过渡金属基催化剂的催化能力.由于大多数电催化剂用于电极表面,研究界面多元素催化剂在相应基体中的催化行为和机理变得尤为重要.近年来,多组分过渡金属基电解水催化剂的协同效应引起了科学家的兴趣.研究者在三元镍-钨-铜合金和过渡金属氧化物等材料体系中观察到催化剂活性随着组分种类的增加而增强.高性能电解水催化材料的开发仍需要对多金属催化剂的机理进行深入的研究.本文采用金属电沉积制备了嵌入在碳化Ppy/CNT基底中的三元过渡金属Zn-Co-Ni合金纳米粒子,研究了其在提升电解水催化能力方面的协同增强效应.通过与一系列的一元或二元金属催化剂的比较,析氢反应(HER)和析氧反应(OER)性能随着组分多样性的增加而增强,并阐明了协同效应下的机制.结果表明,三元金属催化剂ZnCoNi/(Ppy/CNTs)_(4)具有最佳的HER和OER催化效率.DFT模拟计算显示ZnCoNi/(Ppy/CNTs)_(4)催化剂中的电子转移显著改变,降低了HER和OER过渡态的能垒,并增加了活性位点的数量.同时ZnCoNi/(Ppy/CNTs)_(4)催化剂的态密度刚好高于费米能级,界面电子转移电阻小,使催化剂在室温下具有高导电性,同时有利于HER和OER中的可逆过渡态物质的吸附.本研究对高效过渡金属基HER和OER催化剂的进一步开发有一定的启发作用.
    • 胡磊; 宫世坤; 何柳柳; 李林; 朱瑞瑞
    • 摘要: 硒化锌因具有与铂类似的电子结构及低成本而受到广泛关注,但目前硒化锌主要应用于电催化析氢反应(HER)中,其析氧反应(OER)活性仍有待提高,并且传统方法合成的硒化锌粒子尺寸较大且分散性较差.基于此,以双金属CoZn-ZIF为前驱体(Co作为OER活性成分,可有效提高材料的OER性能),通过一步高温硒化得到双金属CoZnSe和氮掺杂碳复合材料(记为CoZnSe@NC).利用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对复合材料的结构和形貌进行表征,并对其电催化析氧性能进行了测试.结果表明:双金属CoZnSe@NC较单金属ZnSe@NC具有更好的OER性能(10和50 mA/cm^(2)电流密度下CoZnSe@NC的过电位分别为268和354 mV);此外,CoZnSe@NC经长时间多电流步骤(Multi-Current Steps)测试后性能基本保持不变,展现了较好的电化学稳定性.
    • 梁昊; 孙建平; 刘翠; 吕杨博; 唐魁
    • 摘要: 金属有机骨架材料(metal organic frameworks,MOFs)作为一种有广泛前景的电解水催化剂材料,近年来引起广泛的关注并被用于析氧反应(oxygen evolution reaction,OER)领域。文章选取Fe和Co两种廉价易得的过渡金属原子,利用简单的一步沉积法制备Co-MOF(ZIF-67)、Fe-MOF、FeCo-MOF三种MOFs材料并研究它们的OER性能。电化学测试结果得:在电流密度达到10 mA/cm^(2)时,FeCo-MOF的OER过电位为297 mV,Tafel斜率为15.93 mV/dec。并在1 mol/L KOH溶液中展现了良好的耐久性。该研究为开发OER电解水催化剂提供一些新的思路。
    • 沈巍; 靳晶; 胡阳; 侯亦超; 殷杰; 马振辉; 赵永青; 席聘贤
    • 摘要: 随着化石燃料的快速消耗和由此产生的环境问题,研究人员正在努力寻找可持续的替代能源和能源储存转换方法.电解水所制备的氢气是一种最佳的能量载体.然而,阳极析氧反应(OER)的缓慢动力学是限制电催化水分解转化效率和阻碍其广泛应用的瓶颈之一.贵金属氧化物IrO_(2)/RuO_(2)和贵金属铂基材料被认为是较好的OER和氢析出反应(HER)电催化剂,但资源稀缺和高成本限制了其广泛应用.与其他催化材料相比,钙钛矿型氧化物具有成本低廉、易于大规模制备等特点.钙钛矿结构通过将缺陷引入A、B或氧位点而表现出可调节和可变的特性.但人们对氯掺杂钙钛矿作为有效的OER催化剂关注较少.在氧位点掺杂一些非氧阴离子有时会产生特殊性质,从而提高催化剂催化性能.卤素相对于氧的电负性较低,掺杂后可使金属-氧共价性质增强,这有利于电催化过程中的电荷转移.氯取代可以降低电化学活性电位从而触发原位形成氯掺杂金属(氧化物)氢氧化物相.与此相反,无氯催化材料需要更高的电化学活性电位来引发或者更多的循环才能完成表面重构,从而导致OER催化性能较差.因此,对于实现高效电催化水分解,合理控制原位形成催化剂的催化活性表面仍然是一个挑战.本文提出了一种阳离子氧化方法,可以调节原位催化剂的浸出并产生自驱动表面重构的La-OH用于OER反应.通过甘氨酸螯合的合成策略,利用甘氨酸经过水热反应螯合金属离子形成前驱体,之后高温合成空心立方体型的氯掺杂的LaCoO_(3)(Cl-LaCoO_(3))纳米晶体,并采用X射线粉末衍射和Cs校正扫描透射电子显微镜来表征.Cl-LaCoO_(3)纳米晶体在10 mA cm^(–2)的电流密度下表现出342 mV的超低过电位和76.2 mV dec_(–1)的Tafel斜率.OER过程中形成的La-OH结构有利于提高材料的结构稳定性和电催化活性,氯的掺杂也有助于提高材料的电催化活性.此外,原位拉曼光谱、X射线光电子能谱等进一步表明了由于稀土镧和氧之间的强相互作用,氯溶解并产生自驱动的La-OH结构可以显著提高材料的催化稳定性.综上,本文为设计掺杂型钙钛矿纳米晶体的高效电催化剂提供了新策略,并为可再生能源系统的应用提出了更多可能性.
    • 赵娟; 吴梦成; 雷惊雷; 李凌杰
    • 摘要: 采用一步水热法,由泡沫钼镍合金同时提供钼源和镍源在泡沫钼镍合金表面原位制备了Ni_(3)S_(2)@Mo_(2)S_(3),并将其直接作为自支撑电极用于催化碱性介质中的电解水析氧反应(OER)。利用多种表征测试技术研究了样品的形貌、组成、OER电催化性能,结果显示:Ni_(3)S_(2)@Mo_(2)S_(3)呈纳米板形貌,由六方Ni_(3)S_(2)和单斜Mo_(2)S_(3)按5∶1的比例复合而成;在1 mol·L^(-1)KOH溶液中,Ni_(3)S_(2)@Mo_(2)S_(3)催化剂仅需要170 mV过电位就可达到10 mA·cm^(-2)电流密度(欧姆补偿后),且在50 h的稳定性测试期间性能基本无衰减,优于贵金属催化剂IrO_(2)以及文献报道的Ni-Mo基复合催化剂。Ni_(3)S_(2)@Mo_(2)S_(3)具有优异电催化性能的原因可归于不同过渡金属化合物的协同作用、原位生长自支撑、电化学活性面积大以及液下疏气性等因素。
    • 唐虎; 刘昉
    • 摘要: 为提升硫化钼全解水的催化能力,采用一步电沉积的方法在镍钴氧化物(NCO)基底上成功制备了钼钴二元硫化物复合电极,研究了添加剂、钼钴物质的量比和沉积时间对电极电催化性能的影响。实验结果表明,采用氟化铵作为添加剂、钼钴物质的量比为5∶7且沉积时间为750 s时,制备的Mo_(5)Co_(7)S_(x)@NCO-750电极具有最佳电催化活性,其析氢反应(HER)过电位和Tafel斜率分别为115 mV和67 mV/dec,析氧反应(OER)过电位和Tafel斜率分别为259 mV和42 mV/dec,全解水时槽压为1.61 V。复合电极电催化性能的提升一方面得益于钴的引入,在硫化钼中形成了高导电性和高催化活性的异质界面,另一方面材料中还存在丰富的具有优异电催化活性的缺陷位点。
    • 张丽桦; 揣宏媛; 刘海; 范群; 况思宇; 张生; 马新宾
    • 摘要: 由可再生能源驱动的水分解是一种有前途的生产清洁能源的技术,而发生在阳极的析氧反应是水分解反应的速率决定步骤。本文通过调整催化剂的晶面,暴露更多的有效活性位点调控尖晶石钴氧化物析氧反应活性。在三个合成晶面(100)、(111)和(110)中,(100)晶面本征活性最高。结合原位红外和DFT计算分析可知,OER反应在氧化钴晶体的(100)平面上反应能垒最低。XPS分析进一步表明,纳米立方体表面具有最高的Co^(3+)/Co^(2+)比值,该结果表明Co^(3+)是更活跃的析氧反应活性位点。
    • 李玉玲; 王垣力; 李冬云; 覃航; 郭文明; 刘小磐; 高朋召; 肖汉宁
    • 摘要: 采用溶剂热法在碳纸(carbon paper,CP)表面分别原位负载2种金属有机框架(metal organic frame,MOFs)前驱体(记为Zn-MOF-74和ZIF-8),经900°C高温热处理后前驱体衍生为氮掺杂多孔碳,得到氮掺杂多孔碳@CP电催化剂材料,分别记为CP-Zn-MOF-74-900-N_(2)和CP-ZIF-8-900-N_(2)。研究CP的组成、孔结构以及外磁场强度对电催化剂OER(oxygen evolution reaction,析氧反应)性能的影响。结果表明,原位负载的ZIF-8在CP的纤维表面形成致密的棱形十二面体颗粒层,热处理后在纤维表面形成均匀的纳米级氮掺杂碳材料。ZIF-8-900-N_(2)的比表面积为1559 m^(2)/g,孔径为0.57 nm,孔容为1.59 cm^(3)/g,具有最佳的磁性能和磁致发热性能。碳纸和氮掺杂多孔碳@CP材料中,CP-ZIF-8-900-N_(2)具有最小的OER过电势和Tafel斜率,分别为334 mV(电流密度为10 mA/cm^(2),经过iR矫正)和187 mV/dec(decade,十进)。当存在外磁场时,随磁场强度增大,催化剂的OER过电势先降低然后稳定不变,当外磁场强度为5.54×10^(−3) T时,CP-ZIF-8-900-N_(2)的过电势达到最小值,为316 mV(没有经过iR矫正),比未引入磁场时下降约20.4%,这主要归因于磁流体动力学效应导致气泡尺寸减小、气泡聚结增强,使得气泡从电极表面的解吸得到改善。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号