首页> 中国专利> 具有改进的电气特性和热特性的功率模块

具有改进的电气特性和热特性的功率模块

摘要

一种功率模块(1),包括布置在衬底(2)上的一组至少三个矩形电气功率部件(11,12,13,14,23,24,25,26),其中,这些矩形电气功率部件(11,14)中的至少一个的至少一侧(31)与穿过该组的其余矩形电气功率部件(12,13)的几何中心的线(3)不正交或不平行。

著录项

  • 公开/公告号CN114846600A

    专利类型发明专利

  • 公开/公告日2022-08-02

    原文格式PDF

  • 申请/专利权人 丹佛斯硅动力有限责任公司;

    申请/专利号CN202080090413.7

  • 申请日2020-12-18

  • 分类号H01L23/66(2006.01);H01L23/498(2006.01);H01L23/538(2006.01);H01L23/00(2006.01);H01L25/07(2006.01);H02M7/00(2006.01);

  • 代理机构中科专利商标代理有限责任公司 11021;

  • 代理人赵金强

  • 地址 德国弗伦斯堡

  • 入库时间 2023-06-19 16:12:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-19

    实质审查的生效 IPC(主分类):H01L23/66 专利申请号:2020800904137 申请日:20201218

    实质审查的生效

  • 2022-08-02

    公开

    国际专利申请公布

说明书

半导体功率模块在工业中应用广泛。例如,这种功率模块可以用于大电流的受控开关,并且可以用于功率转换器(比如逆变器)以将DC转换为AC或反之亦然,或者用于在不同电压或频率的AC之间转换。这种逆变器在电机控制器、或发电或储电之间的接口、或配电网中使用。另外,功率模块越来越多地用于车辆、特别是电动车辆或混合动力车辆,其中电气功率的转换或控制很重要。在这样的应用中,对尺寸、重量和效率有很大的限制。

半导体功率模块被设计为满足两个主要特性:高功率转换效率和高功率密度。还考虑了如使用寿命、成本和质量等因素。为了实现高功率密度,可以使用高性能宽带隙半导体、比如碳化硅(SiC)半导体开关,因为它们通常优于标准硅基半导体开关、例如绝缘栅双极晶体管(IGBT)。SiC器件从热和电气的角度对功率模块的设计提出了很高的要求。宽带隙半导体(例如,SiC半导体开关)具有开关速度可以非常快的特性,这意味着从导通模式到阻断模式的转变只需几纳秒。

SiC MOSFET在其中应用需要在小体积中实现最高效率的这种应用中用作半导体开关。SiC MOSFET同时示出快速开关速度和低导通电阻。由于SiC晶片的制造成本高昂,并且使用当前的制造工艺难以制造出晶体故障量低得可接受的部件,因此管芯通常非常小(例如,5-25mm

良好的功率模块设计的另一个方面是在发热部件(比如半导体开关)与从模块中除去热量的装置(比如散热器、热交换器或蒸发器)之间应该具有非常低的热阻(R

低R

良好的功率模块设计的又另一方面是并联的半导体开关之间应该具有良好的均流对称性。这可以通过确保每个半导体开关的换向环路的尺寸与所并联连接的其他半导体开关的尺寸相等来实现。这产生了对称的开关特性。

在现有技术的功率模块中通常的情况是,并联的半导体开关单行放置,并且彼此非常接近。由于半导体开关之间的热耦合,这会导致较高的R

发明内容

本发明涉及一种功率模块布局,其成功地均衡了并联的半导体开关之间的换向环路。

此外,本发明实现了这样的功率模块布局,其中,并联的半导体开关被分成(理想地)以轴对称方式布置的两组。这使得一组芯片之间的电气距离最小化,但使实际距离尽可能地大。这显著降低了导热路径的热阻。

因此,本发明的目的是提供一种功率模块,该功率模块能够展现出多个并行的半导体开关的同时开关和平衡的操作、比当前可用的功率模块更低的杂散电感以及更稳定和有效的操作。

本发明的另一个目的是提供一种半导体功率模块,该半导体功率模块与类似的现有技术模块相比具有更低的热阻。

根据本发明的第一方面,通过提供一种功率模块来实现上述和其他目的,该功率模块包括布置在衬底上的一组至少三个矩形电气功率部件,其中,这些矩形电气功率部件中的至少一个的至少一侧与穿过该组的其余矩形电气功率部件的几何中心的线不正交或不平行。

衬底可以包括绝缘基底,具有导电轨道以形成附接到绝缘基底所需的电路系统。合适的衬底可以是由绝缘陶瓷层两侧的两个导电铜层形成的DBC(直接敷铜)衬底。其他合适的衬底可以包括DBA(直接敷铝)衬底或本领域公知的其他衬底。

在一个实施例中,构成该组的所有矩形电气功率部件的几何中心沿直线设置。

在另一个实施例中,该组矩形电气功率部件并联电连接。

在进一步的实施例中,这些矩形电气功率部件是半导体开关。术语“半导体开关”在此用于包括许多已知的半导体开关器件中的任何一种。这种器件的示例是晶闸管、JFET、IGBT和MOSFET,并且它们可以基于传统的硅技术或宽带隙技术,比如碳化硅(SiC)。氮化镓(GaN)器件也可能是合适的。

该功率模块可以提供半桥电路的功能。

在本发明的优选实施例中,该衬底可以包括内部负载轨道、两个中间负载轨道和两个外部负载轨道,每个负载轨道是长形的并且在第一方向上基本上横跨该衬底延伸,并且其中,这两个中间负载轨道被布置为与该内部负载轨道相邻,并且每个外部负载轨道相对于基本上与该第一方向正交的第二方向布置在这两个中间负载轨道中的一个的相反侧,并且其中,该功率模块包括两组第一组半导体开关,每组第一组半导体开关安装在该内部负载轨道上并且电连接到该中间负载轨道,使得这些第一组半导体开关形成该半桥电路的第一臂,并且其中,该功率模块包括两组第二组半导体开关,每组第二组半导体开关安装在中间负载轨道上并且电连接到外部负载轨道,使得这些第二组半导体开关形成该半桥电路的第二臂。

术语“轨道”在此用于指定由形成衬底的一部分的金属层形成并且通过间隙与其他轨道绝缘的电路轨道。术语“负载轨道”在此用于指定适合承载大电流的轨道,比如为电气负载供电的轨道,功率模块为该电气负载供电。对大电流适用性可能是轨道宽度和轨道厚度的组合,形成大的截面积,从而允许大电流通过而不会过度加热。

术语“安装”在此用于意指器件与轨道的永久连接,并且可以包括导电连接。这种连接的方式包括焊接、铜焊和烧结。

术语“电连接到”在此用于意指器件的一部分与远程轨道或其他器件的连接。传统上,使用包括铝的金属引线进行这种形式的连接。然而,可以使用其他金属、比如铜。该术语还涵盖条带或胶带粘合、编织带的使用以及实心金属结构(比如夹子或汇流排)的使用。

外部DC功率端子可以在该第一方向上布置在该模块的一端,并且一个或多个AC功率端子可以在该第一方向上布置在该模块的相反端。

在本发明的功率模块的又另一优选实施例中,这些矩形电气功率部件中的至少一个的一侧与穿过该组的其余矩形电气功率部件的几何中心的线之间的角度在30°至60°的范围内、优选地在40°至50°之间、甚至更优选地为45°。

附图说明

从下文中给出的详细描述中,本发明将被更充分地理解。附图仅通过图示的方式给出,因此,它们不是对本发明的限制。在附图中:

图1示出了形成本发明的第一实施例的一部分的衬底布局的平面视图;

图2图示了半导体开关的分布与穿过半导体开关的几何中心的线之间的关系;

图3示出了本发明的实施例的截面;

图4示出了引线和半导体开关的现有技术布局;

图5示出了图4所示布局的修改型式;

图6示出了本发明的第二实施例;

图7示出了本发明的第三实施例的轨道布局和半导体开关放置;

图8示出了本发明的第四实施例;

图9示出了本发明的第五实施例;

图10示出了本发明第五实施例的另一表示,其示出了DC端子和AC端子以及控制端子;

图11示出了本发明第五实施例的立体图,以及

图12示出了半导体开关的上表面上的焊盘区域以及接合引线所需的区域的表示。

具体实施方式

现在出于图示本发明的优选实施例的目的详细参考附图,本发明的模块的第一实施例包括图1所示的衬底、轨道布局和半导体分布。

这里,衬底2包括内部负载轨道4、两个中间负载轨道5、6和两个外部负载轨道7、8,每个负载轨道是长形的并且在第一方向9上基本上横跨衬底2延伸。这两个中间负载轨道5、6被布置为与内部负载轨道4相邻,并且每个外部负载轨道7、8相对于基本上与第一方向9正交的第二方向10布置在这两个中间负载轨道5、6中的一个的与内部负载轨道4的侧相反的侧。还示出了两组第一组半导体开关15-18、19-22,每组第一组半导体开关安装在内部负载轨道4上并且电连接到中间负载轨道5、6,使得这些第一组半导体开关形成半桥电路的第一臂。该模块还包括两组第二组半导体开关11-14、23-26,每组第二组半导体开关安装在中间负载轨道5、6上并且电连接到外部负载轨道7、8,使得这些第二组半导体开关形成半桥电路的第二臂。

这两组第二组半导体开关11-14、23-26被示为分成两组,其方式为使得位于半导体开关线性分布两端的半导体开关11、14、23、26相对于线性分布中的其他半导体开关被旋转,使得它们的侧与穿过该组的其余半导体开关12、13、24、25的几何中心的线3成非正交且非平行角度α。

图2图示了半导体开关11、12、13、14的分布与穿过半导体开关12和13的几何中心的线3之间的关系。这里示出了外部半导体开关11、14的侧与线3之间的角度α。

图3示出了本发明实施例的截面,更详细地示出了衬底2上的结构。这里,衬底2是直接敷铜(DBC)衬底,其包括下铜层34、陶瓷芯35和上铜层33。上铜层33已形成为形成电路系统连接部件的单独导电轨道,这些电路系统连接部件形成半导体功率模块的电子器件。半导体开关36与相邻轨道之间的连接在这里通过引线37进行。还示出了将这些轨道之一连接到模块外部的引线框架39。这种引线框架连接可以用于功率模块内外的功率连接和/或控制连接。在该实施例中,功率模块被包封在模制化合物38中,该模制化合物保护模块内的电路系统和部件免受湿气、灰尘或物理损坏。

图1所示的第一实施例的一个特性在于,引线的将半导体开关11、12、13、14和23、24、25、26连接到外部负载轨道7、8的接线端比这些引线的连接到半导体开关11、12、13、14和23、24、25、26的相反接线端更靠近到一起。

图4示出了现有技术的布局,其中,一组半导体开关40安装在正负载轨道41上并且经由一组引线43电连接到负负载轨道42。引线43的着陆区域44的范围与引线的相反端的范围(即半导体开关40本身的范围)相似。

图5中示出了图4的修改布局,其中,一组半导体开关40安装在正负载轨道41上并且经由一组引线43电连接到负负载轨道42。然而,这里,引线43的着陆区域45明显小于半导体开关40本身的范围。该特征也存在于图1所示的本发明的第一实施例中。以这种方式分布的引线提高了性能,因为通过位于极端位置的半导体开关的换向环路的长度之间的差异大大减小。这可以通过描述图4(其中两个换向环路路径长度之间存在显著差异)和图5(其中该差异大大减小)所示的最短换向环路46和最长换向环路47的箭头看出。

以图5所示的角度可靠地放置引线是非常困难的,特别是对于外部半导体开关来说,因为引线与半导体开关上的焊盘的角度可能存在限制。这在图12中图示,其中,48示出了半导体开关59的上表面上的焊盘区域,并且49示出了接合引线所需的区域。角度β是引线的轴线60与焊盘48的轴线61的最大偏差,以保证引线的可靠接合。因此,如果引线需要以第一实施例和图5中所示的角度放置,则旋转半导体开关本身是有利的。

图6示出了本发明的第二实施例,其中,图1所示的布局通过在内部负载轨道4中引入分离而被略微修改为两个臂4’、4”。内部负载轨道的两个臂之间的这种分离允许将栅极轨道放置在靠近所有内部半导体开关15、16、17、18、19、20、21、22的位置。

图7图示了本发明的第三实施例的轨道布局和半导体开关放置。本质上,该实施例类似于第二实施例(图6)中所示的实施例,但另外还示出了位于中间负载轨道5、6与内部负载轨道4’、4”之间并且也位于内部负载轨道4’、4”的两个臂之间的栅极轨道50和感测轨道51的存在。这里还示出了用于连接外部端子的着陆焊盘。用于正极端子52的着陆焊盘放置在内部负载轨道4上,而用于正极端子53的单个着陆焊盘放置在连接两个外部负载轨道7、8的轨道上。在连接两个中间负载轨道5、6的轨道上示出了AC端子的着陆焊盘。

图8图示了本发明的第四实施例。这里DC连接器的极性相反,但安装的轨道和半导体开关的布局与图6中所示的布局基本没有变化。在图8中,AC端子55位于衬底2的一端,并且正极端子57和负极端子56位于相反端。

图9示出了本发明的第五实施例,这里图示了栅极轨道50和感测轨道51的放置。

图10是基于图8所示的实施例的第五实施例的表示,这里示出了DC端子56、57和AC端子55以及控制端子58。

图11示出了第五实施例的立体图,其中附接有衬底2、半导体开关11-14、负载端子56、57、55以及控制端子58。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号