首页> 中国专利> 基于标准样本及双重-嵌入解耦的电池健康状态估计方法

基于标准样本及双重-嵌入解耦的电池健康状态估计方法

摘要

本发明公开了一种基于标准样本及双重‑嵌入解耦的电池健康状态估计方法,包括提取标准样本显著特征峰,标准样本机理参数标定,待测电池SOH在线估计等步骤。有益效果:本发明从阻抗特征机理分析角度阐述了温度和老化对于IC曲线特征峰电压影响双重耦合关系,提出了基于“标准样本”消除对温度最为敏感的电荷转移电阻引起电压偏移,实现首层解耦,进一步,设定受老化和温度耦合影响的SEI膜电阻整体符合老化线性关系下,该线性关系系数只与温度相关的方式实现嵌入解耦;本发明不仅承袭了基于IC曲线特征估计电池SOH高效率的特征,并从机理分析角度解决了以往IC曲线求解电池SOH在宽温度范围内的精度不高的问题。

著录项

说明书

技术领域

本发明涉及一种电池性能的估计方法,特别涉及一种基于“标准样本”及“双重-嵌入解耦”的宽温度范围下电池健康状态的估计方法,属于动力电池技术领域。

背景技术

近年来电动汽车发展迅猛,作为电动汽车主要动力源的动力电池越来越受到人们关注。其中,锂离子电池以其较高的比能量和比功率被普遍应用于电动汽车中。然而,随着循环次数增加,电池电极活性材料会逐渐消耗,最终导致电池老化及健康状态(State ofHealth,SOH)降低。随着电池不断老化,内阻升高与容量降低会造成电池性能下降,电动汽车故障发生率也会随之增加。因此,准确估计电池SOH能够保证电池使用安全性,提高电动汽车使用性能。

电池SOH估计方法大体上可以分为两大类:基于模型驱动的方法和基于数据驱动的方法。基于模型驱动的方法都需要首先建立电池模型,得到模型数学表达式,然后通过一些智能算法求解模型参数。该方法普遍存在计算复杂,实用性低的问题,而基于数据驱动的电池老化研究不需要建立电池模型,可以有效克服这些不足。常用的数据驱动方法主要有人工神经网络,支持向量机,高斯回归等。这些方法都比较类似,只需要给定样本电池使用过程的数据(如充放电电流、电压和温度等)及对应的老化状态数据,便可达到预测电池SOH的目的。但是一方面这些方法容易陷入过拟合状况,另一方面在输入数据预处理环节需要耗费大量时间。

近年来,研究者倾向于基于容量增量法(Incremental Capacity Analysis,ICA)的电池健康状态估计。电池IC曲线,即电池容量-电压曲线的微分曲线,将充放电过程中内部反应剧烈的电压平台转化为多个峰,通过对曲线特征的分析,可推导得到老化衰退的模式和机理,进而判断电池健康状态。实际使用过程中动力电池工况较为复杂,长时间的充放电状态会释放出大量热量,积聚的热量难以快速散发到外界,最终造成电池温度远高于外界温度,但以往的研究大部分都是基于某一特定温度下进行,而温度会直接影响到电池内部化学反应。不同温度下电池许多基本性能参数如容量和内阻等都会发生变化,IC曲线也会发生不同程度偏移,最终导致IC曲线求SOH在不同温度下准确度相差较大。

发明内容

发明目的:针对现有技术中存在的问题,本发明提供了一种基于标准样本及双重-嵌入解耦的电池健康状态估计方法。本发明通过研究温度及老化对IC曲线特征影响机制,实现温度及老化对IC曲线特征影响的解耦,拓宽IC曲线求解电池SOH的温度范围,最终基于“标准样本”及“双重-嵌入解耦”实现宽温度范围下电池SOH的估计。

技术方案:一种基于标准样本及双重-嵌入解耦的电池健康状态估计方法,包括以下步骤:

步骤一、提取标准样本显著特征峰,选取同一类型不同老化状态的电池在同一温度下进行恒流充电实验,再选择上述任意一块电池在不同温度下进行恒流充电实验,分别采集各组实验中电池的电流、电压和温度数据,根据上述数据分别绘制不同老化状态电池的IC曲线图和不同温度下所测电池的IC曲线图,结合上述两张IC曲线图选定样本显著特征峰;

步骤二、标准样本机理参数标定,基于双重-嵌入解耦得到标准样本关系函数:

关系函数一,电池未老化时,由温度引起电荷转移电阻R

关系函数二,同一温度下,消除电荷转移电阻R

关系函数三,不同温度下的线性关系系数和温度间的关系函数;

步骤三、待测电池SOH在线估计,对待测电池进行恒流充电实验,同时采集电流、电压和实测温度T

进一步,所述显著特征峰是相对变化明显且位于电压中值点附近的特征峰。

进一步,所述步骤二中的关系函数一,电池未老化时,由温度引起R

ΔU

式中a

进一步,所述SOH为100%的标准样本电池为至少三块满足出厂要求的SOH为100%电池平均后的虚拟电池,且通过决定系统R

其中,V

进一步,所述步骤二中关系函数二,同一温度下,消除电荷转移电阻R

ΔU

式中k

进一步,获得所述消除R

进一步,所述步骤二中关系函数三,不同温度下的线性关系系数和电池工作的实际温度T间的关系函数可以描述为:

k

式中A

进一步,所述步骤三中SOH的求解方法为:

首先、以实测温度T

其次、根据ΔU

然后、根据步骤二中不同温度下的线性关系系数和温度间的关系以实测温度T

最后、根据ΔU

有益效果:本发明从阻抗特征机理分析角度阐述了温度和老化对于IC曲线特征峰电压影响双重耦合关系,提出了基于“标准样本”消除对温度最为敏感的R

附图说明

图1为本发明不同老化状态电池IC曲线图;

图2为本发明不同温度下某电池IC曲线图;

图3为本发明标准样本第二特征峰电压与温度关系图;

图4为本发明不同温度下老化状态与电压偏移关系图;

图5为本发明老化线性关系系数与温度关系图;

图6为本发明的估计方法的流程图。

具体实施方式

下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。

本发明提出了一种基于“标准样本”及“双重-嵌入解耦”的宽温度范围下电池健康状态估计方法,主要包括:阻抗特征分析,温度与老化双重-嵌入解耦,IC曲线求解及特征分析,基于“标准样本”的电池SOH在线估计。

上述阻抗特性分析中电池阻抗主要包含电解质、隔膜、电极的体电阻(R

R=R

其中,R为电池阻抗,R

电池老化引起阻抗变化,老化模式主要包含可循环锂损失(loss of lithiuminventory,LLI)与活性材料损失(loss of active material,LAM)。电动汽车用锂离子电池容量损失率一般小于20%,在此使用区间内电极和电解液间的SEI膜的形成、生长导致可循环锂损失占主导,SEI膜生成过程中其体积的增加与可循环锂的消耗量成正比关系。考虑到活性粒子的半径远远大于其上所生产的SEI膜的厚度,可认为在老化初期覆盖在活性粒子表面的SEI膜面积并不发生改变,可循环锂的消耗量正比于SEI膜厚度的变化,且SEI膜厚度增加正比于R

ΔR

ΔR

ΔR

ΔR

ΔR

锂电池的电解液为锂盐电解质和有机溶剂,该电解液中电解质导电主要依靠离子运动。在一定的温度范围内,随着温度的降低,电池内离子活性较低,离子迁移速度降低,电荷转移电阻R

ΔR

ΔR

ΔR

ΔR

ΔR

结合式(2)和式(3)可知,由老化及温度变化引起的电池总阻抗的增加可描述为:

ΔR=ΔR

从上述分析可知,电池电荷转移电阻R

R

ΔR=ΔR

ΔR

上述温度与老化双重-嵌入解耦中认为由温度引起的电荷转移内阻R

T——电池工作的实际温度;

k

a

A

结合式(6),恒流充电阶段电池IC曲线电压偏移可描述为:

ΔU

ΔU

由式(7)可知,针对不同温度下电池,可尝试先消除对温度最为敏感的R

上述IC曲线求解及特征分析中IC曲线求解可以通过常规数值微分求解,也可以通过多项式拟合及概率密度函数法求解,也可参考发明专利(CN 109632138 A)中方法进行求解。本发明仅给出示例,不对求解方法进行具体限定。

上述IC曲线特征分析:图1为不同老化状态电池IC曲线,图2为不同温度下某电池IC曲线。从图1中可看出随着老化程度的加剧,IC曲线特征峰横向向右偏移,且峰值高度下降;从图2中可以看出随着温度升高,IC曲线特征峰横向向左偏移,且峰值高度上升。在恒流充电阶段,电池IC曲线电压偏移可近似归因于阻抗的影响,温度降低及老化程度加剧引起阻抗增大进而导致横向电压的右移。在IC曲线三个主要特征峰中,第二特征峰相对变化明显,且其位于电压中值点附近,因此,本发明选取第二特征峰作为显著特征峰来研究其特征变化与老化/温度关联性。

上述基于“标准样本”的电池SOH在线估计主要分为机理参数标定阶段及在线估计阶段。

上述机理参数标定阶段:首先,进行不同温度和老化试验,实测电池电压、电流及温度数据;然后求取IC曲线;最后,利用IC曲线第二特征峰电压值,通过式(7)进行机理参数标定,主要标定三个关系1)电池未老化时,温度引起R

上述标定关系1)电池未老化时,温度引起R

其中,V

针对不同老化状态的电池,将实测的温度值带入该拟合函数便可得到因温度变化引起的IC曲线电压偏移值,然后将特征峰测量电压值减去对应的温度引起的电压偏移值,便可消除温度变化导致的R

表1电池基本参数

表2由温度引起电压偏移Arrhenius方程拟合参数

上述标定关系2)消除R

ΔU

表3不同温度下的线性拟合系数

上述标定关系3)不同温度下的线性关系系数和温度间的关系:从上述温度与老化双重-嵌入解耦分析中可知线性关系系数k

表4线性关系系数b

上述在线估计阶段:利用电池管理系统(Battery Management System,BMS)采集充电过程中的电压、电流和温度数据,求解电池IC曲线寻求第二特征峰电压。基于采集的第二特征峰电压及机理参数标定阶段得到的离线标定函数,首先,将温度作为输入求取由R

将第二特征峰的实测电压值U

求取不同温度下的1~3号电池SOH,估计SOH结果如表5所示。从表中可以看出求取SOH的最大绝对误差为4.03%,估计SOH为88%的2号电池平均绝对误差为2.41%,估计SOH为82%的3号电池平均绝对误差为1.21%,表明所提方法可实现宽温度范围下的电池SOH估计。

表5不同老化电池估计SOH

所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号