首页> 中国专利> 一种裤衩腿型循环流化床锅炉机组床压预测方法

一种裤衩腿型循环流化床锅炉机组床压预测方法

摘要

本发明涉及一种裤衩腿型循环流化床锅炉机组床压预测方法,包括以下步骤S1数据清洗:对历史数据库进行数据清洗,保证数据的可靠性,利用神经网络插补法对缺值、坏点数据进行补全,并对数据进行归一化;S2数据分析筛选:利用输入变量进行数据相关性分析,然后根据机理分析及数据相关性系数进行筛选;S3聚类处理:设定欧氏距离权重对S2中筛选后的上述输入变量进行无监督聚类,形成划分数据库以及不同数据分类;S4模型训练:对S3中每一个分类中单独进行神经网络模型的训练,形成预测模型库;S5实时预测结果:实时数据通过聚类模型进行判别,根据判别结果选择预测模型进行预测。本发明能够提高对机组床压的预测,提高机组运行稳定性和安全性。

著录项

  • 公开/公告号CN112862151A

    专利类型发明专利

  • 公开/公告日2021-05-28

    原文格式PDF

  • 申请/专利号CN202011621100.8

  • 申请日2020-12-31

  • 分类号G06Q10/04(20120101);G06F30/27(20200101);G06F16/215(20190101);G06F16/2457(20190101);G06F16/2458(20190101);G06F16/28(20190101);G06K9/62(20060101);G06N3/04(20060101);

  • 代理机构12239 天津市君砚知识产权代理有限公司;

  • 代理人张东浩

  • 地址 300000 天津市滨海新区经济技术开发区南港工业区南港四街以东、港云路以北

  • 入库时间 2023-06-19 11:08:20

说明书

技术领域

本发明属于智能发电技术领域,特别涉及一种裤衩腿型循环流化床锅炉机组床压预测方法。

背景技术

近年来,随着社会对环保要求的提升。我国新能源电力发展迅速,风电装机超越美国,居世界第一位;2019年中国新增光伏装机容量30.1GW,连续 7年位居全球第一,光伏产业出货量占据全球70%以上的份额。截至2019年,全国风光装机量已达3.9亿千瓦,位居世界第一。

但是新能源发电机组的不稳定性、间歇性以及不确定性对于电网侧的稳定运行是非常不利的。如果无法解决好系能源的这些劣势,大容量的新能源机组将很难实现并网。针对新能源发电的问题,国家提出了调峰调频的策略,来加强新能源并网的稳定性。火力发电作为我国主要的发电方式,必须支撑起调峰调频的功能作用,弥补新能源电力并网所带来的不稳定性,保证电网稳定性。针对调峰调频,传统火力发电机组存在负荷调节能力差的问题,深度调峰下的传统火电机组必须通过投油辅助炉内燃烧。同时,机组在深度调峰状态下会产生大量的污染物,不利于环境保护和可持续发展。循环流化床锅炉是一种清洁煤燃烧技术,具有以下优点:燃烧效率高、燃料适应性广泛、污染物排放少、负荷调节性能较好以及可高效综合利用资源等,已广泛应用于国内外发电和供热等工业领域。

随着技术进步,大容量循环流化床机组不断发展。然而,循环流化床大型化带来了燃烧不充分的问题,传统炉型很难保证燃烧过程中二次风的穿透能力问题,导致炉内大部分处于负氧燃烧状态,造成经济损失。为了解决这个问题,裤衩腿型锅炉由此诞生。裤衩腿锅炉虽然解决了燃烧问题,但也带来了炉型两侧物料横向运输和波动的问题。当炉膛两侧物料出现大偏差时,物料的横向转移容易形成正反馈,导致出现其中一侧物料急剧升高的现象,严重时,会造成机组停机。

因此保证炉膛两侧物料的平衡是保证机组平稳安全运行的重要前提。在裤衩腿型循环流化床机组中,单侧床压可以直接反映出单侧物料的数量,通过对床压的预测可以很直观的表现出物料的浓度状态。

裤衩腿型循环流化床锅炉的床压主要受分布在炉膛内的物料所影响,保证炉膛两侧物料的平衡在机组运行过程中是非常重要的,目前所采用的控制方式主要是根据现场测点数据进行控制,当出现床压不稳定或者翻床事故时,传统控制方式不能很及时对床压进行控制。因此,床压的不稳定容易成为机组运行中的安全隐患。若能对床压进行预测,对于机组的安全稳定运行是非常有利的,同时这也是智能发电技术中非常重要的一个环节。

发明内容

本发明为解决公知技术中存在的技术问题提供一种裤衩腿型循环流化床锅炉机组床压预测方法,通过该方法对机组床压进行预测和监控,对现场人员的操作起到指导作用,从而提高机组运行的安全性和稳定性。

本发明包括如下技术方案:

一种裤衩腿型循环流化床锅炉机组床压预测方法,包括以下步骤:

S1数据清洗:对历史数据库进行数据清洗,保证数据的可靠性,利用神经网络插补法对缺值、坏点数据进行补全,并对数据进行归一化;

S2数据分析筛选:利用输入变量进行数据相关性分析,然后根据机理分析及数据相关性系数进行筛选;

S3聚类处理:设定欧氏距离权重对S2中筛选后的上述输入变量进行无监督聚类,形成划分数据库以及不同数据分类;

S4模型训练:对S3中每一个分类中单独进行神经网络模型的训练,形成预测模型库,根据不同类别构建单独的预测模型,提高了预测准确性,减少了不同数据分布对预测精度的影响;

S5实时预测结果:实时数据通过聚类模型进行判别,根据判别结果选择预测模型进行预测。

进一步的,所述步骤中的S1中,针对单值点,神经网络插补法主要采用正常数据作为训练,利用双向LSTM模型学习前后数据的变化对缺失值、坏点数据进行填补;针对连续多值点,采用其他变量预测的方式,对该段数据进行填补,若坏点的其他变量都为坏点或缺值,则删除该时间段数据。这种双向填补方式能够充分地收集数据前后的信息,由于工业过程是一个时间连续的过程,因此采用双向LSTM模型能很好的复原数据。这种填补方式能很好地根据数据分布形式进行填充,保证了数据分布的稳定性,有利于预测模型的训练。

进一步的,所述步骤中的S1中,归一化方式采用最大最小归一化方法。最大最小归一化方法为:

其中x

进一步的,所述步骤中的S2中,所述输入变量包括AGC指令,一次风风量,二次风上部风量、二次风下部风量、总燃料量、排渣量以及回料阀开度。

进一步的,所述步骤中的S2中,通过床压变化机理分析对输入变量进行第一次筛选,采用动态时间规整方法(即DTW算法)对经过机理分析所得出的变量进行二次筛选。

进一步的,所述步骤中的S3中,根据专家经验、机理分析对每个变量的欧式距离赋予相应权重,使欧式距离能更好地体现不同运行状态之间的差异。 AGC指令权重K

其中

进一步的,所述步骤中的S3中,所述聚类采用K-means聚类方法且该方法中距离d采用带权重的欧氏距离。利用带权值的欧式距离公式能更好地展现出不同工况下的数据差异性,更符合实际工程应用。

进一步的,所述步骤中的S4中,采用LSTM算法模型对每一类数据进行预测模型的构建。

进一步的,所述步骤S3中用于聚类的数据采用大间隔数据。

进一步的,模型训练阶段采用30s作为间隔对历史数据进行聚类,选择一个完整工况周期作为聚类范围;实际进行预测时采用1s作为数据间隔,对实时数据采用在线输入的方式。

本发明具有的优点和积极效果:

(1)针对裤衩腿型循环流化床锅炉机组床压进行预测,起到对机组参数进行智能监测的目的,减少翻床事故的发生,为电厂智能监测技术、智能发电技术提供可能。

(2)通过机理分析及专家经验构建欧氏距离权重,利用构建的欧式距离对数据进行K-means聚类,将不同锅炉运行状态进行区别,针对不同机组设置不同的权重,具有更强的推广性和普适性。

(3)根据聚类结果,针对每一类数据建立预测模型,提高了预测精度,也减少了由于数据分布不同所导致的预测偏差。

(4)本发明采取外挂服务器的方式进行实现,不涉及原有控制系统改造,不会造成运行稳定性恶化的情况,安全性高。

(5)能有效对床压进行预测,实现对炉膛床压的智能监测,能够在一定时间范围内对运行人员操作进行反馈,有利于安全稳定运行。为后续智能监盘技术,智能预警技术奠定基础。

附图说明

图1是本发明的床压预测方法框架图。

图2是LSTM网络结构图。

具体实施方式

为能进一步公开本发明的发明内容、特点及功效,特例举以下实例并结合附图详细说明如下。

实施例:参阅附图1,一种裤衩腿型循环流化床锅炉机组床压预测方法,包括以下步骤:

S1数据清洗:对历史数据库进行数据清洗,保证数据的可靠性,利用神经网络插补法对缺值、坏点数据进行补全,并对数据进行归一化;归一化方式采用最大最小归一化方法。最大最小归一化方法为:

针对单值点,神经网络插补法主要采用正常数据作为训练,利用双向 LSTM模型学习前后数据的变化对缺失值、坏点数据进行填补;针对连续多值点,采用其他变量预测的方式,对该段数据进行填补,若坏点的其他变量都为坏点或缺值,则删除该时间段数据。这种填补方式能很好地根据数据分布形式进行填充,保证了数据分布的稳定性,有利于预测模型的训练。

双向LSTM模型本质上是由两个LSTM模型组成,一个模型处理正向数据,另一个模型处理逆向数据。针对本发明,当需要对单值数据进行填补时,使用数据前4组数据作为正向LSTM模型的输入,使用数据后4组最为逆行 LSTM模型的输入,最终结果为两个模型的平均值。这种双向填补方式能够充分地收集数据前后的信息,由于工业过程是一个时间连续的过程,因此采用双向LSTM模型能很好的复原数据。

S2数据分析筛选:利用输入变量进行数据相关性分析,然后根据机理分析及数据相关性系数进行筛选;所述输入变量包括AGC指令,一次风风量,二次风上部风量、二次风下部风量、总燃料量、排渣量以及回料阀开度。

床压变化可以直接反映炉膛内部物料的变化。以单侧物料变化为例,单侧物料受给煤,排渣,物料横向流动量,飞灰,回料量的影响,其中,飞灰主要受煤质影响。物料横向流动主要由密相区横向气体压力梯度推动乳化相产生;其次,在稀相区也受横向压差的影响。因此一次风,二次风上部、下部都是对横向物料流动有影响的变量。同时AGC指令决定了炉膛的负荷调度目标,能一定程度上表示未来时刻的信息。综上所述,经过机理分析,选择给煤量,排渣,回料量以及一次风,二次风上部及下部的相关测点作为候选变量。通过床压变化机理分析对输入变量进行第一次筛选,采用动态时间规整方法(即DTW算法)对经过机理分析所得出的变量进行二次筛选。

两个变量之间的相似度可以由DTW计算,DTW算法通过在距离矩阵D

1)路径的第一行第一列的元素是距离矩阵D

2)位于其他位置的元素的值(D

D

DTW算法从距离矩阵的第一行第一列的元素开始,在距离矩阵的最后一行,最后一列结束。路径上最后一个变量的值即为两个变量之间的相似度。

为了在工业过程中实现DTW算法,本发明中利用趋势性将算法中的距离计算进行简化。步骤如下:

1)将数据变量进行趋势化,利用上升、稳定,下降来表征数据的变化,并用+1、0、-1表示。

2)用以下公式代替距离公式:

其中o

以某发电厂330MW循环流化床机组为例,对其变量进行DTW相关性分析,分析结果如表1所示。数据取自稳定状态下的1000组数据,根据现场专家经验设定阈值,对变量进行二次筛选。

S3聚类处理:设定欧氏距离权重对S2中筛选后的上述输入变量进行无监督聚类,形成划分数据库以及不同数据分类;所述聚类采用K-means聚类方法K-means聚类方法主要包含以下步骤:

1)聚类初始化k个不同的中心点{μ

2)聚类,每个训练样本分配到最近的中心点μ

3)更新聚类中心,将每一个中心点μ

4)重复步骤2)到步骤3)直到所有中心点μ

在本方法中,距离d采用带权重的欧氏距离,其公式为:

其中

根据专家经验、机理分析对每个变量的欧式距离赋予相应权重,使欧式距离能更好地体现不同运行状态之间的差异。AGC指令权重K

S4模型训练:对S3中每一个分类中单独进行神经网络模型的训练,形成预测模型库,根据不同类别构建单独的预测模型,提高了预测准确性,减少了不同数据分布对预测精度的影响;采用LSTM算法模型对每一类数据进行预测模型的构建。LSTM网络结构如图2所示。LSTM网络中的数据运算可以表达为如下公式:

i

f

o

h

其中x

S5实时预测结果:实时数据通过聚类模型进行判别,根据判别结果选择预测模型进行预测。

数据取样间隔选择:由于机组运行的状态转换不是瞬间进行的,因此所述步骤S3中用于聚类的数据采用大间隔数据。在本发明中,模型训练阶段采用30s作为间隔对历史数据进行聚类,选择一个完整工况周期作为聚类范围;实际进行预测时采用1s作为数据间隔,对实时数据采用在线输入的方式。

聚类时采用大间隔数据,减少了运算量,避免了短间隔的突变数据点对聚类效果的影响。实际实施时采用在线传输数据的方式,迅速的反映床压的变化趋势。

尽管上面对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式。这些均属于本发明的保护范围之内。

表1是DTW相关系数表:

表1

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号