首页> 中国专利> 一种阵列声波测井和常规测井结合的地层渗透率计算方法

一种阵列声波测井和常规测井结合的地层渗透率计算方法

摘要

本发明公开了一种阵列声波测井和常规测井结合的地层渗透率计算方法,包括(1)数据准备;(2)岩心孔渗关系分类;(3)渗透率敏感参数优选;(4)渗透率计算模型建立;(5)渗透率模型优选;(6)渗透率计算与误差计算。本发明不同于常规的利用孔隙度计算渗透率的方法,本方法主要结合阵列声波测井和常规测井,考虑多方面影响因素,并针对不同孔渗情况的地层设计相应的渗透率计算模型,提高地层渗透率计算精度;利用其计算结果可以在油气勘探阶段定量分析地层的渗透性,帮助后续油气藏的勘探与开发。

著录项

  • 公开/公告号CN112796738A

    专利类型发明专利

  • 公开/公告日2021-05-14

    原文格式PDF

  • 申请/专利权人 西南石油大学;

    申请/专利号CN202110154244.5

  • 申请日2021-02-04

  • 分类号E21B47/14(20120101);E21B47/00(20120101);G06F30/20(20200101);G06Q50/02(20120101);

  • 代理机构11640 北京中索知识产权代理有限公司;

  • 代理人唐亭

  • 地址 610500 四川省成都市新都区新都大道8号

  • 入库时间 2023-06-19 11:00:24

说明书

技术领域

本发明属于油气勘探开发领域,具体涉及一种阵列声波测井和常规测井结合的地层渗透率计算方法。

背景技术

现有的地层渗透率计算模型主要是基于微观参数和常规测井曲线建立的,包括与孔隙度建立相关关系,也大量使用了孔隙或者颗粒微观参数(孔隙半径、颗粒半径、比表面积、弯曲度、束缚水含量、流动单元等),广泛运用了核磁共振测井(T2、核磁共振孔隙度)和电阻率测井(孔隙度、电阻率),其次是自然伽马测井。

阵列声波测井是具有多探头声系、测量多波列的声波测井方法,通过记录多条曲线进行相关和叠加处理,可以有效地压制干扰,准确提取纵波、横波和斯通利波的各种信息。目前少有基于阵列声波测井的渗透率计算方法,仅有利用横波时差或者纵波时差计算孔隙度,从而计算地层渗透率,其精度远不足以对地层渗透率进行准确定量描述。以前只能利用阵列声波测井定性评价地层渗透性,通过进一步的研究目前已经开始利用阵列声波测井定量确定地层渗透性。

通过调研大量的文献、分析相关测井及实验资料,发现地层渗透率与阵列声波之间具有较强的相关性,本发明在总结前人研究得出的常规渗透率计算公式及结论的基础上,提出了不同于以往的渗透率计算方法——结合了阵列声波测井和常规测井资料的渗透率计算方法,即通过已有的常规测井、阵列声波测井和岩心物性分析资料建立渗透率与各影响因素之间的关系模型,应用到不同孔渗关系的地层,极大地提高了地层渗透率计算精度。利用本发明方法可以在油气勘探阶段定量分析地层的渗透性,进而帮助后续油气藏的勘探与开发。

发明内容

本发明主要是克服现有技术中的缺点,本发明提供一种阵列声波测井和常规测井结合的地层渗透率计算方法,本发明通过综合分析常规测井、阵列声波测井和岩心物性分析资料,研究渗透率与常规测井、阵列声波测井数据之间的相关性,针对不同孔隙度的地层建立不同的高精度渗透率计算模型,从而提高地层渗透率的计算精确率。

本发明解决上述技术问题,所提供的技术方案是:一种阵列声波测井和常规测井结合的地层渗透率计算方法,根据研究区的岩心物性分析资料、常规测井资料和阵列声波测井资料获取岩心孔隙度、岩心渗透率、自然伽马曲线、泥值含量曲线、测井计算孔隙度、横波时差、声波时差和斯通利波时差;

根据研究区的岩心物性分析资料,并利用岩心渗透率和测井计算孔隙度绘制孔隙度-岩心渗透率散点图;

根据孔隙度-岩心渗透率散点图中数据点分布的不同特征,将研究区的岩心地层划分成不同孔渗类别的地层;

根据每类地层的岩心渗透率,每类地层分别建立波时差、孔隙度、自然伽马、泥质含量、横波时差和斯通利波时差与岩心渗透率的拟合关系以及回归系数;并根据回归系数在每类地层中优选出三个渗透率模型敏感参数;

根据每类地层中优选出的三个渗透率模型敏感参数分别建立指数乘积形式渗透率计算模型、幂形式渗透率计算模型;

根据每类地层建立的指数乘积形式渗透率计算模型、幂形式渗透率计算模型分别计算出结果,将每类地层的两个计算结果分别与每类地层的岩心渗透率进行回归分析,比较回归系数的大小,选择回归系数大的模型作为每类地层的最优渗透率计算模型;

根据每类地层的最优渗透率计算模型确定研究区结合阵列声波和常规测井的地层渗透率计算模型;

根据研究区结合阵列声波和常规测井的地层渗透率计算模型以及研究区其他任意没有岩心物性分析资料的地层计算其孔隙度,应用相应的渗透率计算模型得到地层渗透率。

进一步的技术方案是,根据孔隙度-岩心渗透率散点图中数据点分布的不同特征,将研究区的岩心地层划分成不同孔渗类别的地层包括:

根据孔隙度-岩心渗透率散点图图中分布的不同特征确定岩心孔渗分类结果和分类标准;

根据岩心孔渗分类结果和分类标准将研究区的岩心地层划分成不同孔渗类别的地层。

进一步的技术方案是,根据每类地层的岩心渗透率,每类地层分别建立波时差、孔隙度、自然伽马、泥质含量、横波时差和斯通利波时差与岩心渗透率的拟合关系以及回归系数;并根据回归系数每类地层优选出三个渗透率模型敏感参数包括:

根据每类地层的岩心渗透率,每类地层分别绘制岩心渗透率-声波时差散点图、绘制岩心渗透率-孔隙度散点图、岩心渗透率-自然伽马散点图、绘制岩心渗透率-泥质含量散点图、绘制岩心渗透率-横波时差散点图、绘制岩心渗透率-斯通利波时差散点图;并分别拟合计算得到岩心渗透率-声波时差回归系数、岩心渗透率-孔隙度回归系、岩心渗透率-自然伽马回归系数、岩心渗透率-泥质含量回归系数、岩心渗透率-横波时差回归系数、岩心渗透率-斯通利波时差回归系数;

根据岩心渗透率-声波时差回归系数、岩心渗透率-孔隙度回归系,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一;

根据岩心渗透率-自然伽马回归系数、岩心渗透率-泥质含量回归系数,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一;

根据岩心渗透率-横波时差回归系数、岩心渗透率-斯通利波时差回归系数,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一。

进一步的技术方案是,所述指数乘积形式渗透率计算模型为:

式中:K

进一步的技术方案是,所述幂形式渗透率计算模型为:

式中:K

进一步的技术方案是,所述指数乘积形式渗透率计算模型的建立过程包括:

首先计算岩心渗透率的对数值和三个渗透率模型敏感参数的对数值,然后建立这四者的多元回归方程;

lgK

式中:K

将上述多元回归方程的等号左右两边同时取作10的指数,得到指数乘积形式的渗透率模型;

式中:K

进一步的技术方案是,所述幂形式渗透率计算模型的建立过程为:

首先计算岩心渗透率对数值,然后建立岩心渗透率对数值与三个渗透率模型敏感参数的多元回归方程;

lgK

式中:K

将上述多元回归方程的等号左右两边同时取作10的指数,得到幂形式的渗透率模型如下;

式中:K

本发明具有以下有益效果:本发明不同于常规的利用孔隙度计算渗透率的方法,本方法主要结合阵列声波测井和常规测井,考虑多方面影响因素,并针对不同孔渗情况的地层设计相应的渗透率计算模型,提高地层渗透率计算精度;利用其计算结果可以在油气勘探阶段定量分析地层的渗透性,帮助后续油气藏的勘探与开发。

附图说明

图1为本发明的流程框图;

图2为岩心孔渗关系分类结果图;

图3为实施例1的岩心孔渗关系分类结果图;

图4为实施例1的岩心渗透率与声波时差、孔隙度的拟合关系对比图;

图5为实施例1的岩心渗透率与自然伽马、泥质含量的拟合关系对比图;

图6为实施例1的岩心渗透率与横波时差、斯通利波的拟合关系对比图;

图7为高孔渗地层下不同模型的渗透率计算结果与岩心渗透率回归结果对比图

图8为低孔渗地层下不同模型的渗透率计算结果与岩心渗透率回归分析对比图;

图9为低孔渗地层下本发明方法(结合阵列声波测井和常规测井)与常规方法(利用孔隙度)计算渗透率结果对比图;

图10为高孔渗地层下本发明方法(结合阵列声波测井和常规测井)与常规方法(利用孔隙度)计算渗透率结果对比图。

具体实施方式

下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。

如图1所示,本发明的一种阵列声波测井和常规测井结合的地层渗透率计算方法,包括以下步骤:

(1)数据准备:准备研究区的岩心物性分析资料、常规测井资料和阵列声波测井资料,根据上述资料获得岩心孔隙度、岩心渗透率、自然伽马曲线、泥值含量曲线、测井计算孔隙度、横波时差和斯通利波时差等参数;

(2)岩心孔渗关系分类:选取步骤(1)中有岩心物性分析资料的地层,利用岩心渗透率和测井计算的孔隙度,绘制孔隙度-岩心渗透率散点图,根据数据点分布的不同特征(如两部分不同孔隙度区域的孔渗拟合曲线有明显的差别),将其划分成不同的孔渗类别,如图2所示,得到岩心孔渗分类结果并确定分类标准:低孔渗区域孔隙度≤A%,A%<中孔渗区域孔隙度≤B%,B%<高孔渗区域孔隙度(其中A<B);其中图2中仅划分了三个类别孔渗关系,实际应用中还可以按照具体情况,划分更多或更少的孔渗关系类别;

(3)渗透率模型敏感参数优选:基于步骤(2)的孔渗关系分类结果,选择其中具有某一类孔渗关系的地层,分别建立声波时差、孔隙度、自然伽马、泥质含量、横波时差和斯通利波时差与岩心渗透率的拟合关系和回归系数,并优选出三个渗透率模型敏感参数:

具体的是:绘制岩心渗透率-声波时差散点图,拟合计算得到岩心渗透率-声波时差回归系数,绘制岩心渗透率-孔隙度散点图,拟合计算得到岩心渗透率-孔隙度回归系数,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一;

绘制岩心渗透率-自然伽马散点图,拟合计算得到岩心渗透率-自然伽马回归系数,绘制岩心渗透率-泥质含量散点图,拟合计算得到岩心渗透率-泥质含量回归系数,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一;

绘制岩心渗透率-横波时差散点图,拟合计算得到岩心渗透率-横波时差回归系数,绘制岩心渗透率-斯通利波时差散点图,拟合计算得到岩心渗透率-斯通利波时差回归系数,比较这两个回归系数大小,选择回归系数更大的因素作为渗透率模型敏感参数之一;

(4)渗透率模型建立:针对步骤(3)中选取的某一类孔渗关系的地层,利用步骤(3)所选择的三个渗透率模型敏感参数建立该类地层的渗透率计算模型;

本发明采用了两种形式的渗透率计算模型:指数乘积形式渗透率计算模型和幂形式渗透率计算模型,以下分别说明建立指数乘积形式渗透率计算模型和幂形式渗透率计算模型的操作步骤:

①指数乘积形式渗透率计算模型

建立指数乘积形式渗透率计算模型的操作步骤如下:

首先计算岩心渗透率的对数值和步骤(3)中所确定的三个渗透率模型敏感参数的对数值,然后建立这四者的多元回归方程(1):

lgK

式中:K

将公式(1)等号左右两边同时取作10的指数,得到指数乘积形式渗透率计算模型(公式2):

式中:K

②幂形式渗透率计算模型

建立幂形式渗透率模型的操作步骤如下:

首先计算岩心渗透率对数值,然后建立岩心渗透率对数值与步骤(3)中所确定的三个渗透率模型敏感参数的多元回归方程(3):

lgK

式中:K

将公式(3)等号左右两边同时取作10的指数,得到幂形式渗透率计算模型(4)如下:

式中:K

(5)渗透率模型优选:利用步骤(4)建立的两个渗透率计算模型(公式2和公式4),分别计算出某一类孔渗关系地层指数乘积形式和幂形式渗透率模型的计算结果,将计算结果分别与岩心渗透率进行回归分析,比较回归系数的大小,选择回归系数更大的模型作为该类孔渗关系地层的最优渗透率计算模型;

至此,就完成了步骤(2)中某一类孔渗关系地层的最优渗透率模型建立,只需重复步骤(3)到步骤(5)的操作,直至所有类别的孔渗关系均建立出最优的渗透率模型,这样就得到了结合阵列声波和常规测井的地层渗透率计算模型;

(6)渗透率与误差计算:选择研究区其他任意没有岩心物性分析资料的地层计算其孔隙度,根据步骤(5)得到的不同孔渗关系的渗透率计算模型,应用相应的渗透率模型计算得到地层渗透率;

误差计算:利用绝对误差平均值计算公式(5),比较本发明模型的计算精度与常规模型的计算精度;

式中:

实施例1

本发明的一种阵列声波测井和常规测井结合的地层渗透率计算方法,具体包括以下步骤:

(1)数据准备:准备研究区的岩心物性分析资料、常规测井资料和阵列声波测井资料,根据资料获取岩心孔隙度、岩心渗透率、自然伽马曲线、泥值含量曲线、测井计算孔隙度、横波时差和斯通利波时差;

(2)岩心孔渗关系分类:选取步骤(1)中有岩心物性分析资料的所有地层,利用岩心渗透率和测井计算的孔隙度,绘制孔隙度-岩心渗透率散点图,根据其分布的不同特征(如两部分不同孔隙度区域的孔渗拟合曲线有明显的差别),将其划分成不同的孔渗类别,如图3所示,确定分类标准:低孔渗区域孔隙度≤9%,9%<高孔渗区域孔隙度;

(3)渗透率模型敏感参数优选:基于步骤(2)的孔渗关系分类结果,选择高孔渗区域孔隙度的地层;

(31)通过绘制岩心渗透率-声波时差散点图(如图4(a)所示),拟合计算得到岩心渗透率-声波时差回归系数R

(32)通过绘制岩心渗透率-自然伽马散点图(如图5(a)所示),拟合计算得到岩心渗透率-自然伽马回归系数R

(33)通过绘制岩心渗透率-横波时差散点图(如图6(a)所示),拟合计算得到岩心渗透率-横波时差回归系数R

(34)综上确定出本实施例的高孔渗类型地层的渗透率计算模型的三个渗透率模型敏感参数包括孔隙度、泥质含量和斯通利波时差;

(4)渗透率模型建立:针对步骤(3)中选取的高孔渗关系的地层,利用步骤(3)所选择的三个渗透率模型敏感参数建立渗透率计算模型;指数乘积形式和幂形式,以下分别说明建立指数乘积形式模型和幂形式模型的操作步骤:

①指数形式

建立指数乘积形式的渗透率模型的操作步骤如下:

首先计算岩心渗透率对数值、孔隙度对数值、斯通利波时差对数值和泥质含量对数值,然后建立这四者的多元回归方程(6):

lgK

式中:K

最后得到指数乘积形式的渗透率计算模型(7)如下:

K

式中:K

②幂形式

建立幂形式的渗透率模型的操作步骤如下:

首先计算岩心渗透率对数值、孔隙度、斯通利波时差和泥质含量,然后建立这四者的多元回归方程(8):

lgK

式中:K

最后得到幂形式的渗透率计算模型(9)如下:

K

式中:K

(5)渗透率模型优选:利用步骤(4)中建立的两个渗透率计算模型(公式7和公式9),计算得到所选的高孔渗关系地层的指数乘积形式和幂形式两类模型的渗透率计算结果,将两者分别与所选地层的岩心渗透率进行回归分析,如图7所示,比较得到的岩心渗透率与两个模型计算渗透率的回归系数,故选择线性回归系数更大的指数乘积形式的计算模型(公式7)作为本实施例的高孔渗关系的最优渗透率计算模型;

至此,就完成了步骤(2)所划分的多个孔渗关系的其中一个——高孔渗关系地层的最优渗透率计算模型的建立,只需重复步骤(3)到步骤(5)的操作得到低孔渗地层的两个渗透率模型,如图8所示,通过比较两个模型的回归系数选出低孔渗地层的最优渗透率模型——幂形式的渗透率计算模型,于是就得到了所有孔渗关系地层的渗透率模型如表1所示:

表1不同孔渗关系的渗透率计算模型

(6)渗透率与误差计算

选择研究区其他任意没有岩心物性分析资料的地层计算其孔隙度,根据步骤(5)得到的不同孔渗关系的渗透率计算模型,应用相应的渗透率模型计算得到地层渗透率,即只需根据所选地层的具体孔隙度情况应用所建立的渗透率计算模型,就可以得到该目标地层高精度的渗透率计算结果。

如图9、图10所示,为不同孔渗关系地层下本发明方法(结合阵列声波测井和常规测井)与常规方法(利用孔隙度)计算渗透率结果对比;

误差计算:利用绝对误差平均值计算公式(5),如表2所示,得到本发明的模型计算渗透率的相对误差与常规模型计算渗透率的相对误差。

表2在不同孔渗情况下不同模型计算渗透率的相对误差对比

结合表1所展示的在不同孔渗情况下不同模型计算渗透率的平均绝对误差(利用公式5计算平均绝对误差)对比结果,以及图9和图10所示的本发明方法(结合阵列声波测井和常规测井数据)与常规方法(利用孔隙度)计算渗透率的结果对比,可以发现利用本发明所建模型计算的地层渗透率结果在精度上有进一步的提高,利用其计算结果可以在油气勘探阶段定量分析地层的渗透性,帮助后续油气藏的勘探与开发。

以上所述,并非对本发明作任何形式上的限制,虽然本发明已通过上述实施例揭示,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,可利用上述揭示的技术内容作出些变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号