首页> 中国专利> 一种基于回归曲线的步态双侧对称性评价方法

一种基于回归曲线的步态双侧对称性评价方法

摘要

本发明公开了一种基于回归曲线的步态双侧对称性评价方法。首先,利用加速度传感器获取步态运动时足部三轴加速度信息,并对获取的加速度信息进行消噪预处理;其次,提取消噪后的加速度信号,分别计算连续步态周期的双侧对称性指标,实现步态对称性的定量分析。本发明步态双侧对称性检测方法具有简便、准确的特点,在步态平衡能力分析等领域具有广阔的应用前景。

著录项

  • 公开/公告号CN106937872A

    专利类型发明专利

  • 公开/公告日2017-07-11

    原文格式PDF

  • 申请/专利权人 杭州电子科技大学;

    申请/专利号CN201710262314.2

  • 发明设计人 高发荣;许敏华;李影;甘海涛;

    申请日2017-04-20

  • 分类号A61B5/11;G06F17/18;

  • 代理机构杭州君度专利代理事务所(特殊普通合伙);

  • 代理人杜军

  • 地址 310018 浙江省杭州市下沙高教园区2号大街

  • 入库时间 2023-06-19 02:46:58

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-11-12

    授权

    授权

  • 2017-08-04

    实质审查的生效 IPC(主分类):A61B5/11 申请日:20170420

    实质审查的生效

  • 2017-07-11

    公开

    公开

说明书

技术领域

本发明属于模式识别技术领域,涉及一种加速度信号的识别方法,特别涉及一种基于回归曲线的双侧步态对称性评价方法。

背景技术

下肢步态是人体在行走过程中,双腿所表现出的姿势和状态,具有周期性、连续性和重复性等特点。人体行走过程中,从一侧脚跟着地到该侧脚跟再次着地的时间为一个完整的步态周期。在步态运动中,人体神经中枢通过复杂的、不易复制的控制,表现出高效能、稳定的步态。其中,步态运动的主要执行者为下肢,而足部作为人体与地面之间接触的器官,在运动过程中发挥了重要作用,其运动的对称性分析结果,被广泛应用于运动员训练、健康人锻炼,以及行走障碍患者功能康复等的步态运动评价。

现有技术中,常采用足底压力信息研究步态的对称性。其方法是当足底与地面接触的时,通过测量足部与地面相互挤压产生的足底压力来实现。但在足部处于来回摆动的步态过程时,无法获取有效的足底压力信息。因此,基于足底压力的步态分析,对于完整的、连续步态周期存在一定的局限性。加速度信号由足部运动产生,具有实时、连续性的特点,可用于进行步态分析。现有技术中,步态双侧对称性分析指标包括非对称性的统计值,如相关系数、主成分、方差分析以及平均差分析等,存在随机误差大,数据利用率低的问题。例如,均差指标用于评估垂直方向上的平移,容易受到步态曲线幅值的影响,随机误差大。另外,运动范围仅仅比较了步态曲线中的最大、最小值,而忽略了曲线总体的分布状况,具有数据利用率低的缺陷。

发明内容

本发明针对目前人体行走时步态对称性分析中数据利用率低、随机误差大的问题,提出一种基于回归原理的步态双侧对称性评价方法。

为了实现上述目标,本发明方法包括以下步骤:

步骤1,足部运动加速度信号获取。

在实验数据采集中,将加速度传感器置于受试者足部前端,采集步态运动过程中产生的足部三轴加速度信号,然后对原始足部三轴加速度信号进行消噪预处理,分离出信号与噪声,最后重构消噪后的加速度信号样本数据,获得步态运动足部加速度信息。

步骤2,基于回归曲线的步态双侧对称性指标计算

步态双侧对称性的评价集中在计算分析一个步态周期内双侧步态曲线的差异。其中,较小的双侧曲线差异代表了较高的对称性。曲线上的每一点减去均值得到新的曲线,计算公式如下:

其中,为左右两侧足部的原始数据,通过三轴加速度计来获取;为转化后的左右曲线点;为左右曲线的均值。

将上一过程中计算转换得到的步态加速度数据重构成一个矩阵其矩阵M构成下:

对矩阵M应用奇异值分解计算其特征向量,具体计算步骤如下:

1)根据|λE-MMH|=0求出矩阵MMH的特征值λ1、λ2、...、λn,同时可得对应奇异值假设共有j个奇异值。其中E为单位矩阵,MH为矩阵M的共轭转置矩阵,计算如下:

其中,为ro(i)-rave(i)的共轭复数。

2)分别计算特征值λi对应的特征向量满足其中,

为n维空间中的正交基。这里,矩阵M的特征向量代表了矩阵内所有元素的分布特点,因此沿着该特征向量的方向,矩阵变异率达到最大。

在计算得到矩阵M特征向量的基础上,依据三角几何关系进一步求得特征向量与坐标轴与x或y之间的夹角。根据该夹角,将矩阵M的每一行进行旋转变化,使之沿着x轴或者y轴分布。旋转计算如下:

其中,分别为旋转后的左右步态曲线;θ为矩阵M特征向量与x轴或者y轴的夹角。旋转后的步态曲线沿着x轴分布,分别计算x轴方向与y轴方向上步态曲线的变化率。横轴变化率varX表示沿着特征向量方向步态曲线的畸变状况,纵轴方向的变化率varY表示沿特征向量正交方向上的畸变状况,计算如下:

这里为向量的模,为向量的模。由此得到步态双侧对称性指标值,表达式为varY/varX,以一个百分数来表示,用于评价双足行走时的步态对称性,其中0%表示最佳对称性。

本发明中提出一种基于回归曲线的方法,通过计算完整步态周期的数据,得到左右足部步态对称性指标值,用于评价人体步态的对称性。本发明中的方法随机波动小,对称性指标数值稳定,收敛性较高。

附图说明

图1为本发明具体实施流程图;

图2为连续步态周期双侧对称性计算过程示意图;

图3为一个步态周期的步态曲线及回归曲线;

图4为步态双侧对称性指标。

具体实施方式

下面结合说明书附图对本发明的具体实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。但本发明的保护范围不限于下述的实施例。

如图1,本发明方法的实施主要包括以下步骤:

步骤一,双侧足部加速度信号采集。在步态运动过程中,采用Delsys公司的三轴加速度计,其采样频率为150Hz。

在本实施例中,选取的实验对象为24±1.75健康男性,采用不同步速作为步态双侧对称性对比评价的依据,分别以1.0m/s、1.2m/s、1.4m/s以及1.6m/s的速度进行平地行走运动。采集到的加速度信号由蓝牙模块传输到PC机,在滤波预处理的基础上进行下一步态双侧对称性分析环节。

步骤二,计算步态双侧对称性指标。当受试者进行步态实验时,左右双足处于周期性摆动、交替向前的过程,因此左右的步态曲线存在一定的相位差。为了分析两侧足部步态曲线之间的双侧对称性,需要截取不同侧的完整步态曲线。同时,用于比较计算的步态曲线之间不能存在相位差。

本实施例中,选取一个完整的步态曲线周期作为目标,通过时间平移,分别计算每次平移时的相关性,用以确定分析趋势对称值的双侧曲线。其中,平移时间与步态曲线相关性之间的关系如图2所示。其中,a为平移时间与差异性曲线;b为平移时间500-700内的差异曲线,即为图2a中虚线框A内差异曲线;b内黑色“+”号代表该区间内,差异性最低点,即双侧步态曲线相关性最高点。

如图2所示,双侧步态差异曲线呈现出较强的周期性。取一个周期中最小差异性值,以此为基础,分析基于回归曲线的双侧步态曲线之间的趋势对称值,如图3所示。图中,3a为双侧步态曲线,不带点的代表左侧,带点的代表右侧,g代表重力加速度,值为9.8m/s2;3b虚线为回归曲线,实线为特征向量的方向。通过计算平行与垂直特征向量两个方向上的曲线变异性,分析左右两侧步态曲线之间的步态双侧对称性指标,为增加双侧对称性评价的代表性,本实施例选取了12组不同步速下的对称指标值,并计算了相应的平均值和方差值,如表1所示。

表1不同步态条件趋势对称值

在本实施例中,为了让评价结果更为直观,将受试者步态双侧对称性指标值的变化趋势用盒状图方式表示,如图4所示。其中,横坐标代表受试者行走步速,分别为1.0m/s、1.2m/s、1.4m/s以及1.6m/s。图中,“+”表示离群值,表明该值与本组其他数据存在显著差异;横线表示第50个百分位数,即中位数;另外,从上到下的边界依次为第90、75、25以及10个百分位数,盒子的扁平程度代表了数据的集中程度;最后,“*”表示该组双侧对称值的均值位置。

运动人体双侧步态曲线的双侧对称性表示左右曲线的差异程度,即当对称性指标值为0时,双侧曲线相似度最高,对称性最佳。依据对称性指标的定义,如图4中,随着受试者行走步速的提高,步态双侧对称性指标呈现下降趋势,该现象说明,在本测试范围内,步态的双侧对称性随着行走速度的提高而逐渐增强。另外,在该过程中,盒状图中盒子区域随着行走速度的提高更趋于扁平化,数据分布更为紧密,说明其随机波动性变小,对称性指标趁好。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号