首页> 外文OA文献 >Using geological and geochemical information to estimate the potential distribution of trace elements in Scottish groundwater
【2h】

Using geological and geochemical information to estimate the potential distribution of trace elements in Scottish groundwater

机译:利用地质和地球化学信息估算苏格兰地下水中微量元素的潜在分布

摘要

There are currently few reliable data available for the concentrations of trace elements inudScottish groundwaters. A new project Baseline Scotland, jointly funded by the BritishudGeological Survey (BGS) and the Scottish Environment Protection Agency (SEPA), seeks toudimprove the data availability and general understanding of the chemistry of Scotland’sudgroundwater. However, this is a major undertaking and these new data will take several yearsudto collect and interpret across the whole of Scotland.udIn the interim, SEPA have asked BGS to use their existing knowledge and data to give audrough estimate of where certain elements are more likely to be elevated in groundwater. Thisudinformation will be used to help focus future monitoring and give background for BaselineudScotland. Predicting trace element concentrations is difficult, in part due to lack ofudknowledge on the distribution of mineral phases, the reactivity of different minerals and theudgeochemical environment, particularly the redox status.udThis report scopes the potential scale of naturally elevated trace elements in Scottishudgroundwater, in particular those elements that are potentially harmful to health: e.g.udaluminium, arsenic, barium, cadmium, chromium, lead, manganese, nickel, uranium and zinc.udThe problems and limitations of prediction are discussed in the report and this work does notudreplace a proper assessment based on actual chemical analyses of groundwater.udThe method uses information on the geochemistry of the Scottish environment derived fromudthe most comprehensive geochemical data set for Scotland, the BGS Geochemical BaselineudSurvey of the Environment (G-BASE), combined with the limited data available on theudchemistry of Scottish groundwaters. The conditions under which each of the elements canudbecome elevated in groundwater are discussed and the geological and geochemicaludinformation interpreted to produce a series of maps highlighting areas where each traceudelement may be elevated in groundwater relative to the Scottish average.udThe maps are based primarily on the 1:625 000 scale bedrock geology map of Scotland. Inudorder to make the scheme and the maps simple and manageable, we have used the sameudnumbers to describe the individual rock units (1 to 114) that are usedd on the Geological mapudof the UK (Solid Geology): North sheet. Some rock units have been subdivided, and otherudsmall areas highlighted where additional information is known, either from G-BASE orudprevious studies.udAfter assessing the results of the exercise the following conclusions can be drawn:ud1. The study has provided a useful summary of geochemical information for traceudelements in Scotland, and detail the conditions in which these elements may becomeudelevated in groundwater. This provides essential background to the Baseline Scotlandudproject, which aims to improve the availability of groundwater chemistry data and theudgeneral understanding of the chemistry of Scotland’s groundwater.ud2. The predictions can be used as a first pass to help focus and prioritise additionaludmonitoring and for helping to interpret groundwater chemistry data from differentudareas. The predictions are only preliminary and will be modified in the future byuddetailed groundwater sampling and interpretation.udThere are several caveats:ud• For all of the trace elements considered, the lack of available groundwater chemistryuddata with detailed analysis of trace elements, and their restricted spatial distribution, means that it is not possible to rigorously test whether the groundwater qualityudpredictions are accurate or not.ud• More groundwater chemistry data are available for three elements, barium, manganeseudand zinc, allowing a rudimentary test of the predictive maps. For barium theudprediction appears to work well, but there is poor correlation for zinc. For manganese,udsome correlation is evident, but the complexity and variability of local conditions areudsuch that much variation is observed.ud• This approach, using broad, national scale geological and environmental data, cannotudaccount for the complexity of the controls on groundwater chemistry: i.e. theudheterogeneous nature of the Scottish environment, not least the aquifer mineralogy andudglacial history, and the complex behaviour of trace elements in groundwater,uddetermined by aspects such as flow pathways, residence times, and the geochemicaludenvironment (for example, oxidising/reducing or acidic/alkaline conditions).udIn summary, this approach appears to be a useful first step in trying to estimate the likelyuddistribution of trace elements in Scottish groundwater, in the absence of much reliableudgroundwater quality data. However, only by systematically collecting reliable groundwaterudchemistry data, across different aquifers and regions and from different depths, can theudvariation in trace elements in groundwater across Scotland be understood. Careful modellingudand interpretation of these new data in the context of the geology and environmentaludconditions will help make future predictions of groundwater quality more reliable and provideudreference information for the Water Framework Directive.
机译:目前,关于 ud苏格兰地下水中微量元素浓度的可靠数据很少。由英国地理地质调查局(BGS)和苏格兰环境保护局(SEPA)共同资助的一项新的基线苏格兰项目,旨在提高对苏格兰地下水化学的数据可用性和一般理解。但是,这是一项艰巨的任务,这些新数据将需要花费数年 ud才能在整个苏格兰进行收集和解释。 ud在此期间,SEPA已要求BGS使用其现有的知识和数据对何处进行粗略的估算。某些元素更有可能在地下水中升高。此 udinformation信息将用于帮助重点关注将来的监视并为Baseline udScotland提供背景信息。很难预测痕量元素的浓度,部分原因是缺乏对矿物相分布的了解,不同矿物的反应性和化学化学环境,尤其是氧化还原状态。本报告涵盖了自然升高的痕量元素的潜在规模在苏格兰地下水中,尤其是那些可能对健康有害的元素:例如,uda,砷,钡,镉,铬,铅,锰,镍,铀和锌。 ud报告中讨论了预测的问题和局限性该方法使用的是苏格兰环境的地球化学信息,该信息来源于苏格兰最全面的地球化学数据集,BGS地球化学基线 udSurvey。环境(G-BASE),结合有关苏格兰地下水化学分析的有限数据。讨论了在地下水中每种元素可能升高的条件,并解释了地质和地球化学信息,以生成一系列地图,突出显示了相对于苏格兰平均值,地下水中每种痕量/元素可能升高的区域。这些地图主要基于比例为1:625 000的苏格兰基岩地质图。为了使方案和地图简单易管理,我们使用相同的 udnumber来描述在英国(固体地质)的地质图 ud上使用的各个岩石单位(1至114):北页。从G-BASE或以前的研究中,可以细分一些岩石单元,并在其他 udsmall区域突出显示已知的其他信息。 ud在评估了练习结果之后,可以得出以下结论: ud1。这项研究为苏格兰的痕量元素的地球化学信息提供了有用的总结,并详细说明了这些元素在地下水中可能被降低的条件。这为“苏格兰基线”项目提供了必要的背景,该项目旨在提高地下水化学数据的可用性以及对苏格兰地下水化学的“预算”理解。这些预测可以作为第一步,以帮助重点关注和优先进行其他监测,并帮助解释来自不同国家的地下水化学数据。这些预测只是初步的,将来会通过详细的地下水采样和解释进行修改。 ud有几点警告: ud•对于所有痕量元素,缺乏可用的地下水化学信息 uddata以及痕量的详细分析元素及其有限的空间分布,这意味着不可能严格测试地下水质量预测是否准确。 ud•可获取更多的钡,锰,铀和锌三种元素的地下水化学数据,预测图的基础测试。对于钡,预测似乎效果很好,但是与锌的相关性很差。对于锰来说, udsome相关性是显而易见的,但是当地条件的复杂性和可变性 ud使得观察到的变化很大。 ud•这种方法使用了广泛的,国家规模的地质和环境数据,无法说明矿物的复杂性。对地下水化学的控制:即苏格兰环境的非均质性质,尤其是含水层的矿物学和冰川历史,以及地下水中微量元素的复杂行为,由流动路径,停留时间和地球化学等方面决定 udenvironment(例如氧化/还原或酸性/碱性条件)。 ud总而言之,在缺乏可靠度的情况下,此方法似乎是尝试估算苏格兰地下水中痕量元素的可能 ud分布的有用的第一步。 地下水水质数据。但是,只有通过系统地收集可靠的地下水化学数据,才能跨越不同的含水层和区域以及不同的深度可以理解整个苏格兰地下水中微量元素的变化。在地质和环境 ud情况下对这些新数据进行仔细的建模 udand解释将有助于使对地下水质量的未来预测更加可靠,并为《水框架指令》提供 ud参考信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号