首页> 美国政府科技报告 >Computational Wireless Network Backplane: Performance in a Distributed Speaker Identification Application Postprint
【24h】

Computational Wireless Network Backplane: Performance in a Distributed Speaker Identification Application Postprint

机译:计算无线网络背板:分布式扬声器识别应用后印刷中的性能

获取原文

摘要

A major challenge in the DoD's next-generation network-centric information systems concerns on-demand provisioning of computation and network infrastructures at tactical network edges (e.g., deploying wireless airborne or hybrid air/ground networks). To support this vision, we present DWARF, a general distributed application execution framework for wireless ad-hoc networks which dynamically allocates computation resources and manages failures. DWARF nodes each run a separate task simultaneously, thereby achieving execution speed-up from parallel processing. Failed tasks, e.g., due to fluctuating wireless links to mobile nodes, are automatically detected and reassigned, transparent to the application. Further, tasks are executed in an order that satisfies dependencies given by task dependency graphs. To use DWARF, application programmers need only decompose their applications into tasks and define the task dependency graphs. In this paper, we describe DWARF and report its benefits in running an important existing application, speaker identification over a 32-node wireless network which supports fault-tolerant computation. We observed two major performance gains: (1) a ten-fold speed-up in identifying speakers due to parallelizing the application, and (2) higher accuracy in speaker identification, made possible by the increased sensor diversity provided by geographically distributed nodes. While our nodes have modest computing power individually, combined under DWARF, they are able to execute speaker identification with much greater speed and with improved accuracy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号