...
首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >The gyroscopic Earth and its role in supercontinent and metallogenic cycles
【24h】

The gyroscopic Earth and its role in supercontinent and metallogenic cycles

机译:陀螺地球及其在超大陆和成矿循环中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Compilation and analysis of the paleomagnetically constrained plate tectonic reconstructions for the last 2.5 Ga of Earth's history reveal that continental and oceanic hemispheres are principal and stable first order divisions on the Earth, with cyclical breakup and reassembly of the continental crust into supercontinents. Although the breakup of the supercontinent Rodinia at 0.75 Ga marked important reorganization of the plate tectonic pattern, the movements of large continental masses, both before and after the breakup of Rodinia, show remarkable synchronism, albeit in significantly rearranged combinations. The patterns with disassembled continents coincided with periods when substantially more than 50% of the continental masses occurred either in the northern (during Palaeoproterozoic and Cenozoic times) or southern (during Neoproterozoic to middle Palaeozoic times) hemispheres, whereas the reassembled supercontinents were always symmetrically centred near the Equator. It is proposed that such regularity might be governed by a convection-driven move of the continental fragments towards a pole after the breakup of the supercontinent, followed by gyroscopic rebalancing (or shift) of all earth's solid shells (e.g., entire mantle+lithosphere) towards the Equator relative to the more stable-oriented magnetic currents in the liquid core. This process is somewhat similar to the true polar wander concept, but it takes into account the spinning forces of the Earth. Mantle convection is considered as an important force, constantly driving the plates in the oceanic hemisphere and keeping the continental hemisphere intact. The periods of gyroscopic rebalancing correspond to the reassembly of the supercontinents at 2.7-2.5 Ga (Kenorland), 2.0-0.75 Ga (Columbia and its modification into Rodinia), and 0.32-0.18 Ga (Pangaea). The main reassembly mechanism, in addition to rifting, spreading and collision, is large-scale strike-slip translation of not only relatively small lithotectonic terranes, but also of major cratons. These cycles govern changes from the dominantly extension- to collision- and plume-related mineral deposit types in the internal orogens in the continental hemisphere, whereas subduction-related to collision-related mineral deposit types remain persistent through the metallogenic cycles at the oceanic/continental hemisphere transition zone, just migrating oceanward in time.
机译:对地球历史最后2.5 Ga的古磁约束板块构造重建进行的汇编和分析显示,大陆和海洋半球是地球上主要且稳定的一阶分区,并且周期性地破裂并将大陆壳重组为超大陆。尽管在0.75 Ga处超大陆罗丹尼亚的破裂标志着板块构造格局的重要重组,但在罗丹尼亚破裂之前和之后,大的大陆块的运动都显示出了显着的同步性,尽管以明显的重排组合。大陆解体的模式与北半球(古元古代和新生代期间)或南部(新元古代至中古生代期间)的半球超过大约50%的时期相吻合,而重新组合的超大陆始终对称地居中在赤道附近。建议这种规律性可以由超大陆破裂后对流驱动的大陆碎片向极点移动,然后对所有地球固体壳(例如整个地幔+岩石圈)进行陀螺仪再平衡(或移位)来控制。相对于液芯中更稳定定向的磁流向赤道方向移动。这个过程有点类似于真正的极地漂移概念,但是它考虑了地球的自旋力。地幔对流被认为是重要的力量,它不断驱动洋半球的板块并保持大陆半球的完整性。陀螺仪再平衡的周期对应于超大陆在2.7-2.5 Ga(Kenorland),2.0-0.75 Ga(哥伦比亚及其变质为Rodinia)和0.32-0.18 Ga(Pangaea)的重组。除裂谷,扩散和碰撞外,主要的重组机制是不仅对相对较小的岩相地层而且对主要克拉通进行大规模的走滑转换。这些周期控制着大陆半球内部造山带中从显性延伸到碰撞和羽流相关的矿床类型的变化,而与碰撞相关的矿床类型的俯冲相关的变化通过海洋/大陆的成矿周期仍然持续存在。半球过渡带,只是及时向海洋迁移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号