...
首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >New insights into secondary gas generation from the thermal cracking of oil: Methylated mono-aromatics. A kinetic approach using 1,2,4-trimethylbenzene. Part II: An empirical kinetic model
【24h】

New insights into secondary gas generation from the thermal cracking of oil: Methylated mono-aromatics. A kinetic approach using 1,2,4-trimethylbenzene. Part II: An empirical kinetic model

机译:通过油的热裂化产生二次气体的新见解:甲基化单芳烃。使用1,2,4-三甲基苯的动力学方法。第二部分:经验动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

The scope of the present study was to develop an empirical kinetic model predicting, over the whole range of reactant conversions (0-100%), the yield of CH4 generated from the thermal degradation of 1,2,4-trimethylbenzene, a model compound for methylated mono-aromatic hydrocarbons present in oil. Most of the chemical equations of the model were constrained by our previous mechanistic model (Fusetti et al., 2010). The resulting reaction scheme was composed of four CH4 generation pathways: (P-a) dimerization of 1,2,4-trimethylbenzene, (P-b) demethylation of 1,2,4-trimethylbenzene into xylenes, (P-c) condensation reactions of dimers and C18+ products into (prechar + char) components and (P-d) dimerization of xylenes and their demethylation into toluene. Associated activation energies were in the range 52-61 kcalmol(-1) and frequency factors were all in the neighborhood of 10(12) s(-1). Below 5% conversion, P-b and P-c governed CH4 generation, followed by P-a. Above 5% conversion, P-c was the main source of CH4, followed by P-b and P-a, respectively. P-d showed negligible CH4 yields up to 95% conversion. Above 100% conversion, the degradation of (prechar + char) components seemed the most likely new source of gas which was not accounted for in the model. Using a unique chemical equation with a maximum CH4 yield of 7.6 wt% per CH3 group and an associated set of kinetic parameters E-a = 58.5 kcalmol(-1) and A = 10(11.96) s(-1), we demonstrated CH4 generation kinetics from the thermal degradation of 1,2,4-trimethylbenzene to be similar to CH4 generation kinetics previously reported from the thermal degradation of methylated polyaromatic hydrocarbons. Eventually, the four-equation empirical model was used to perform simulations under temperature conditions usually encountered in deeply buried reservoirs (DBR). Under these conditions, the simulations revealed the CH4 prone character of methylated mono-aromatic hydrocarbons. Moreover, these simulations demonstrated that the thermal stability increased as follows: methylated polyaromatics < methylated mono-aromatics < saturates. The risk for the decrease in the porosity of reservoirs was also quantified via the prediction of the yield of (prechar + char) components.
机译:本研究的范围是建立一个经验动力学模型,该模型预测在整个反应物转化率(0-100%)范围内,由1,2,4-三甲基苯(模型化合物)的热降解产生的CH4收率用于油中存在的甲基化单芳烃。该模型的大多数化学方程式都受到我们先前的力学模型的约束(Fusetti等,2010)。所得的反应方案由四个CH4生成途径组成:(Pa)1,2,4-三甲基苯的二聚化,(Pb)1,2,4-三甲基苯的脱甲基化为二甲苯,(Pc)二聚体和C18 +产物的缩合反应转化为(prechar + char)组分,以及二甲苯的(Pd)二聚作用及其脱甲基为甲苯。相关的活化能在52-61 kcalmol(-1)范围内,频率因子都在10(12)s(-1)附近。转化率低于5%时,P-b和P-c控制CH4的生成,其次是P-a。高于5%的转化率,P-c是CH4的主要来源,其次分别是P-b和P-a。 P-d显示可忽略不计的CH4转化率高达95%。转化率高于100%时,(prechar + char)组分的降解似乎是最有可能的新气体来源,该气体来源未在模型中说明。使用独特的化学方程式,每个CH3组的最大CH4产率为7.6 wt%,以及相关的一组动力学参数Ea = 58.5 kcalmol(-1)和A = 10(11.96)s(-1),我们证明了CH4生成动力学1,2,4-三甲基苯的热降解产生的甲烷类似于先前报道的甲基化多芳烃的热降解产生的CH4动力学。最终,使用四方程经验模型在深埋油藏(DBR)中通常遇到的温度条件下进行模拟。在这些条件下,模拟显示了甲基化的单芳烃的CH4倾向性。此外,这些模拟表明,热稳定性增加如下:甲基化的聚芳烃<甲基化的单芳烃<饱和。储层孔隙度降低的风险也通过预测(prechar + char)组分的产量来量化。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号