首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter
【24h】

Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter

机译:土壤中细菌生物质衍生脂肪酸的命运及其对土壤有机质的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

Soil organic matter (SOM) is a major pool of the global C cycle and determines soil fertility. The stability of SOM strongly depends on the molecular precursors and structures. Plant residues have been regarded as the dominant precursors, but recent results showed a major contribution of microbial biomass. The fate of microbial biomass constituents has not yet been explored; therefore, we investigated the fate of fatty acids (FA) from C-13 labeled Gram-negative bacteria (Escherichia coli) in a model soil study [Kindler, R., Miltner, A., Richnow, H.H., Kastner, M., 2006. Fate of gram negative bacterial biomass in soil-mineralization and contribution to SOM. Soil Biology & Biochemistry 38, 2860-2870]. After 224 days of incubation, the label in the total fatty acids (t-FA) in the soil decreased to 24% and in the phospholipid fatty acids (PLFA) of living microbes to 11% of the initially added amount. Since the bulk C decreased only to 44% in this period, the turnover of FA is clearly higher indicating that other compounds must have a lower turnover. The 13C label in the t-FA reached a stable level after 50 days but the label of the PLFA of the living microbial biomass declined until the end of the experiment. The isotopic enrichment of individual PLFA shows that the biomass derived C was spread across the microbial food web. Modelling of the C fluxes in this experiment indicated that microbial biomass is continuously mineralized after cell death and recycled by other organisms down to the 10% level, whereas the majority of biomass derived residual bulk C (similar to 33%) was stabilized in the non-living SOM pool. (C) 2008 Elsevier Ltd. All rights reserved.
机译:土壤有机质(SOM)是全球碳循环的主要来源,它决定了土壤肥力。 SOM的稳定性在很大程度上取决于分子的前体和结构。植物残渣被认为是主要的前体,但最近的结果表明微生物生物量的主要贡献。微生物生物质成分的命运尚未探索。因此,我们在模型土壤研究中调查了C-13标记的革兰氏阴性细菌(大肠杆菌)中脂肪酸(FA)的命运[Kindler,R.,Miltner,A.,Richnow,HH,Kastner,M., 2006。土壤矿化中革兰氏阴性细菌生物量的命运以及对SOM的贡献。土壤生物学与生物化学38,2860-2870]。孵育224天后,土壤中的总脂肪酸(t-FA)中的标记降低至24%,活微生物的磷脂脂肪酸(PLFA)中的标记降至初始添加量的11%。由于在此期间本体碳仅下降到44%,因此FA的营业额明显较高,表明其他化合物的营业额必须较低。 50天后,t-FA中的13C标记达到稳定水平,但活微生物生物量的PLFA标记下降,直到实验结束。单个PLFA的同位素富集表明,源自生物质的C遍布整个微生物食物网。在该实验中对碳通量进行建模表明,微生物生物量在细胞死亡后会持续矿化,并被其他生物体再循环至10%的水平,而大多数生物质衍生的残余散装碳(约33%)在非生物体内稳定。 -生活SOM池。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号