...
首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons
【24h】

Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons

机译:深盆气中碳和氢同位素的逆转:证明碳氢化合物稳定性受到限制的证据

获取原文
获取原文并翻译 | 示例
           

摘要

During studies of unconventional natural gas reservoirs of Silurian and Ordovician age in the northern Appalachian basin we observed complete reversal of the normal trend of carbon isotopic composition, such that δ~(13)C methane (C_1) >δ~(13)C ethane (C_2) >δ~(13)C propane (C_3). In addition, we have observed isotopic reversals in the δ~2H in the deepest samples. Isotopic reversals cannot be explained by current models of hydrocarbon gas generation. Previous observations of partial isotopic reversals have been explained by mixing between gases from different sources and thermal maturities. We have constructed a model which, in addition to mixing, requires Rayleigh fractionation of C_2 and C_3 to cause enrichment in ~(13)C and create reversals. In the deepest samples, the normal trend of increasing enrichment of ~(13)C and ~2H in methane with increasing depth reverses and ~2H becomes depleted as ~(13)C becomes enriched. We propose that the reactions that drive Rayleigh fractionation of C_2 and C_3 involve redox reactions with transition metals and water at late stages of catagenesis at temperatures on the order of 250-300°C. Published ab initio calculated fractionation factors for C-C bond breaking in ethane at these temperatures are consistent with our observations. The reversed trend in δ~2H in methane appears to be caused by isotopic exchange with formation water at the same temperatures. Our interpretation that Rayleigh fractionation during redox reactions is causing isotopic reversals has important implications for natural gas resources in deeply buried sedimentary basins.
机译:在研究阿巴拉契亚盆地北部志留系和奥陶纪时代的非常规天然气储层时,我们观察到了碳同位素组成的正常趋势的完全逆转,即δ〜(13)C甲烷(C_1)>δ〜(13)C乙烷(C_2)>δ〜(13)C丙烷(C_3)。此外,我们在最深的样品中观察到了δ〜2H的同位素反转。同位素逆转不能用当前的烃类气体生成模型来解释。以前对部分同位素反转的观察已通过不同来源的气体和热成熟度之间的混合来解释。我们构建了一个模型,除了混合外,还需要C_2和C_3的瑞利分馏来引起〜(13)C的富集并产生逆转。在最深的样品中,随着深度的增加,甲烷中〜(13)C和〜2H富集度增加的正常趋势会逆转,并且~~ 13H变得富集时,〜2H会耗尽。我们提出,驱动C_2和C_3的瑞利分馏的反应涉及在催化作用后期,温度约为250-300°C时与过渡金属和水的氧化还原反应。在这些温度下,已发布的从头算起的乙烷中C-C键断裂的分馏因子计算与我们的观察结果一致。甲烷中δ〜2H的逆转趋势似乎是由在相同温度下与地层水的同位素交换引起的。我们关于氧化还原反应过程中瑞利分馏会导致同位素反转的解释,对深埋沉积盆地的天然气资源具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号