...
首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Distinguishing gases derived from oil cracking and kerogen maturation:Insights from laboratory pyrolysis experiments
【24h】

Distinguishing gases derived from oil cracking and kerogen maturation:Insights from laboratory pyrolysis experiments

机译:区分源自油裂化和干酪根成熟的气体:实验室热解实验的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Kerogen separated from an immature Type I mudstone from the third section of the Tertiary ShahejieFormation (ES_3~3) in the Dongying Depression of Bohai Bay Basin was subjected to stepwise isothermalpyrolysis. Products were extracted, fractionated into chemical groups, and re-mixed to obtain a syntheticoil with a group composition similar to reservoir oil and a pseudo-kerogen composed of 83% kerogen and17% residual soluble organic matter (referred as s-oil and p-kerogen, respectively, to distinguish themfrom a produced reservoir oil and a real kerogen). The two samples were pyrolyzed in sealed gold tubesunder constant pressure (50 MPa) and non-isothermal heating (300-600 °C) conditions and their gener-ated gases were analyzed. The two gases are quite different in their chemical and isotopic composition.Compared with the gas derived from the p-kerogen, the s-oil derived gas is enriched in C2-05 hydrocar-bons in its early cracking stages and C_1-C_3hydrocarbons are depleted in δ~13Cthroughout the crackingstages. The maximum wetness (C_2-5/C_1-5) of the s-oil gas and the p-kerogen gas is 0.62 and 0.35, respec-tively, and the carbon isotopic ratio differences between the two type gases can reach 10%., (613C1), 14%(δ~13C_2), and 9‰(δ~3). The 2-3difference of the s-oil gas is much more sensitive to thermalstress than that of the p-kerogen gas and plots of (813C2-813C3) versus .513C1 and (813C2-813C3) versusIn(C2/C3) are effective in identifying the two gas types in some geological conditions. These resultsprovide a guide to differentiate gases derived from oil cracking from gases derived from kerogen matu-ration using their chemical and carbon isotopic compositions in some simple petroleum systems.
机译:从渤海湾盆地东营凹陷第三系沙三段(ES_3〜3)未成熟的I型泥岩中分离出的干酪根经历了逐步等温热解。提取产品,将其分馏成化学组,然后重新混合,以获得类似于油层组成的合成油,以及由83%干酪根和17%残留可溶性有机物(称为s-油和p-干酪根,以区别于已生产的储层油和真正的干酪根)。将这两个样品在恒定压力(50 MPa)和非等温加热(300-600°C)条件下在密封金管中热解,并分析其产生的气体。两种气体的化学和同位素组成完全不同。与对干酪根衍生的气体相比,s油衍生的气体在裂解初期富含C2-05碳氢化合物,并且消耗了C_1-C_3碳氢化合物。在整个裂解阶段的δ〜13C温度范围内。 s-石油气和p-干酪根气的最大湿度(C_2-5 / C_1-5)分别为0.62和0.35,两种气体之间的碳同位素比差可以达到10%。 (613C1),14%(δ〜13C_2)和9‰(δ〜3)。 s-石油气的2-3差异对热应力比对p干酪根的气体更敏感,并且(813C2-813C3)对.513C1和(813C2-813C3)对In(C2 / C3)的曲线在在某些地质条件下识别两种气体类型。这些结果提供了在某些简单的石油系统中使用其化学和碳同位素组成来区分油裂化产生的气体和干酪根成熟产生的气体的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号