...
首页> 外文期刊>Reviews in mineralogy and geochemistry >Highly Siderophile Element and Os-187 Signatures in Non-cratonic Basalt-hosted Peridotite Xenoliths: Unravelling the Origin and Evolution of the Post-Archean Lithospheric Mantle
【24h】

Highly Siderophile Element and Os-187 Signatures in Non-cratonic Basalt-hosted Peridotite Xenoliths: Unravelling the Origin and Evolution of the Post-Archean Lithospheric Mantle

机译:非克拉通玄武岩中的橄榄岩辉石异岩中的高度亲铁元素和Os-187签名:揭示了后Archean岩石圈地幔的起源和演化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The highly siderophile elements (HSE) consist of the Platinum Group Elements (PGE: Ru, Rh, Pd, Os, Ir, Pt) along with rhenium and gold. These transition elements show relative chemical inertness and high market values, which respectively earned them the additional names of noble metals and precious metals.The HSE show a very pronounced affinity for iron metal, which translates into metal/ silicate partition coefficients similar to or higher than 10,000 over large ranges of both pressure and temperature (e.g., O'Neill et al. 1995; Borisov and Palme 2000; Ertel et al. 1999, 2001, 2006, 2008; Fortenfant et al. 2003, 2006; Brenan et al. 2005; Cottrell and Walker 2006; Brenan and McDonough 2009; Laurenz et al. 2010; Mann et al. 2012; see Brenan et al. 2016, this volume for detailed review). Consequently, the HSE are thought to have been efficiently sequestered within the metallic core of our planet during the metal-silicate differentiation of Earth, leaving the silicate counterpart almost HSE-barren. Investigations of mantle peridotites since the 1970s revealed ng.g~(-1) level abundances as well as close-to-chondritic proportions of the HSE (Chou 1978; Jagoutz et al. 1979; Mitchell and Keays 1981; McDonough and Sun 1995; Becker et al. 2006; Fischer-Godde et al. 2011). Such abundances and inter-HSE fractionations are not predicted for the silicate Earth left after separation of the metallic core for low- or high-pressure core-mantle differentiation (see Brenan et al. 2016, this volume). The close agreement between the osmium isotopic compositions of fertile mantle peridotites and those of chondritic meteorites (Walker et al. 2002a), which requires nearly identical Re/Os ratios in these two reservoirs, provides particularly convincing evidence that the mantle's HSE content cannot simply represent the residue left after core formation. These observations have led to suggestions that the HSE systematics in the Earth's mantle could in fact reflect 1) inefficient core formation (Arculus and Delano 1981; Jones and Drake 1986), 2) repeated equilibrium-fractionation events, each involving only part of the mantle (Azbel et al. 1993), 3) core-mantle differentiation followed by core-mantle interaction (Snow and Schmidt 1998), and/or 4) a late accretionary event, also known as the "late veneer" hypothesis (e.g., Kimura et al. 1974; Chou 1978; Jagoutz et al. 1979; Morgan et al. 1981, 2001; Pattou et al. 1996). Among these, the last scenario, consisting of global-scale metal-silicate differentiation followed by late addition of an extraterrestrial component 4.2-3.8 Ga ago, after core formation has ceased, is currently the most favoured hypothesis, although some issues remain unresolved (Walker 2009; see review of Yokoyama and Walker 2016, this volume). It has also been proposed that a late heavy bombardment event of this type established the HSE abundances and 1870s signatures in the silicate Moon (Walker et al. 2004; Day et al. 2007; see detailed review in Day et al. 2016, this volume). If such a 2-fold scenario (core-mantle differentiation followed by late reintroduction of HSE) accounts for the HSE signatures in the Earth's mantle, the relative HSE- abundances within rocks from the terrestrial mantle (as well as in the lunar mantle) should hold the key to the nature of the extraterrestrial component, which "refertilized" the silicate Earth-Moon system in HSE. This late accreted material has also been postulated to have (re)-introduced volatiles and the organic molecules necessary for the emergence of life on our planet (Cooper et al. 2001; Kring and Cohen 2002). Therefore, understanding the origin of the HSE signatures may help us to understand when and how our planet acquired a favorable environment for the development of life. Identifying the nature of this late meteoritic bombardment would furthermore provide firm constraints on the origin of the impactors and thus on models of the formation and early evolution of the inner solar system.
机译:高度嗜铁元素(HSE)由铂族元素(PGE:Ru,Rh,Pd,Os,Ir,Pt)以及rh和金组成。这些过渡元素显示出相对的化学惰性和较高的市场价值,分别为它们赢得了贵金属和贵金属的附加名称.HSE对铁金属表现出了非常明显的亲和力,这转化为金属/硅酸盐的分配系数接近或高于在大范围的压力和温度范围内为10,000(例如,O'Neill等人1995; Borisov和Palme 2000; Ertel等人1999,2001,2006,2008; Fortenfant等人2003,2006; Brenan等人2005 ; Cottrell和Walker 2006; Brenan和McDonough 2009; Laurenz等人2010; Mann等人2012;请参阅Brenan等人2016,此册有详细评论)。因此,人们认为在地球的金属硅酸盐分化过程中,HSE被有效地螯合在了我们星球的金属核内,而硅酸盐对应物几乎是HSE贫瘠的。自1970年代以来对地幔橄榄岩的研究表明,HSE的ng.g〜(-1)含量丰度以及接近软骨的比例(Chou 1978; Jagoutz等1979; Mitchell和Keays 1981; McDonough和Sun 1995; Becker等人,2006年; Fischer-Godde等人,2011年)。对于分离低压或高压岩心-地幔分化的金属岩心后剩余的硅酸盐地球,并没有预测到这种丰度和HSE间的分馏作用(参见Brenan等人,2016年,此卷)。肥沃的幔橄榄岩和软骨陨石的and同位素组成之间的密切一致(Walker等人,2002a),要求这两个储层中的Re / Os比率几乎完全相同,这提供了特别令人信服的证据,表明地幔的HSE含量不能简单地代表岩心形成后残留的残渣。这些观察结果表明,地球地幔中的HSE系统学实际上可以反映出1)低效率的岩心形成(Arculus和Delano 1981; Jones和Drake 1986),2)重复的平衡分级事件,每个事件仅涉及地幔的一部分。 (Azbel et al。1993),3)核心-地幔分化,然后是核心-地幔相互作用(Snow and Schmidt 1998),和/或4)后期增生事件,也称为“晚期单板”假说(例如,木村等人,1974; Chou,1978; Jagoutz等,1979; Morgan等,1981,2001; Pattou等,1996)。其中,最后一个场景是最受支持的假说,该场景由全球规模的金属硅酸盐分化,随后在地心形成停止后于4.2-3.8 Ga前延迟添加地外成分组成,尽管目前尚有一些问题尚未解决(Walker) 2009年;请参阅《横山和Walker 2016年评论》,本卷)。也有人提出这种类型的晚期重炮轰事件在硅酸盐月亮中建立了HSE丰度和1870s特征(Walker等人2004; Day等人2007;详见Day等人2016年的综述,本册)。如果这样的2倍情景(核心—地幔分化,然后重新引入HSE)解释了地球地幔中的HSE特征,那么应该考虑陆地地幔(以及月球地幔)中岩石中HSE的相对丰度。掌握了地外成分本质的关键,该成分“引用”了HSE中的硅酸盐地球-月球系统。还假定这种较晚积聚的物质具有(重新)引入的挥发物和地球上生命出现所必需的有机分子(Cooper等,2001; Kring和Cohen,2002)。因此,了解HSE签名的起源可能有助于我们了解我们的星球何时以及如何为生命的发展获得有利的环境。识别这种晚期陨石轰炸的性质,将进一步对撞击源的产生,从而对内部太阳系形成和早期演化的模型提供牢固的约束。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号