首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations
【24h】

Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

机译:使用贝叶斯推断和SMOS观测值对GEOS-5 L波段辐射传输模型参数进行不确定性量化

获取原文
获取原文并翻译 | 示例
           

摘要

Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soilmoisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation optical depth and scattering albedo for largescale applications are difficult to obtain fromfield studies and often lack an estimate of uncertainty.Here, aMarkov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at multiple incidence angles, at horizontal and vertical polarizations, and for morning and evening overpasses. Tb simulations are generated with the land model component of the Goddard Earth Observing System (version 5) and confronted with Tb observations from the SoilMoisture Ocean Salinity satellite mission. Themaximuma posteriori density (MAP) parameter values reduce the root-mean-square differences between observed and simulated long-term Tb averages and standard deviations to 3.4 K and 2.3 K, respectively. The relative uncertainty of the posterior RTM parameter estimates is typically less than 25% of the MAP parameter value, whereas it exceeds 100% for literature-based prior parameter estimates. It is also shown that the parameter values estimated through Particle Swarm Optimization are in close agreement with those obtained from MCMC simulation. The MCMC results for the RTM parameter values and the uncertainties presented herein are directly relevant to the need for accurate Tb modeling in global land data assimilation systems.
机译:L波段(1.4 GHz)微波辐射传输模型(RTM)的不确定性影响着陆地上的亮温(Tb)的模拟,以及卫星观测到的Tb转化为土壤水分的反演。特别是,难以从野外研究中获得对大规模应用的微波土壤粗糙度,植被光学深度和散射反照率的准确估计,并且通常缺乏不确定性的估计。此处,使用马尔可夫链蒙特卡罗(MCMC)模拟方法确定卫星通过最小化长期平均值和模拟和观测到的Tb在多个入射角,水平和垂直极化以及早,晚立交桥的长期平均偏差与标准偏差之间的不匹配,对RTM参数及其后验不确定性进行大规模估计。用戈达德地球观测系统(第5版)的土地模型部分生成了Tb模拟,并与土壤水分海洋盐度卫星任务进行的Tb观测相对。最大后验密度(MAP)参数值将观察到的和模拟的长期Tb平均值和标准偏差之间的均方根差分别减小到3.4 K和2.3K。后RTM参数估计的相对不确定度通常小于MAP参数值的25%,而对于基于文献的先前参数估计,其不确定度超过100%。还表明,通过粒子群优化估计的参数值与从MCMC仿真获得的参数值非常接近。 RTM参数值的MCMC结果和此处介绍的不确定性与全球陆地数据同化系统中对精确Tb建模的需求直接相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号