...
【24h】

Antiproton radiotherapy.

机译:抗质子放射疗法。

获取原文
获取原文并翻译 | 示例
           

摘要

Antiprotons are interesting as a possible future modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, protons and antiprotons have near identical stopping powers and exhibit equal radiobiology well before the Bragg-peak. But when the antiprotons come to rest at the Bragg-peak, they annihilate, releasing almost 2 GeV per antiproton-proton annihilation. Most of this energy is carried away by energetic pions, but the Bragg-peak of the antiprotons is still locally augmented with approximately 20-30 MeV per antiproton. Apart from the gain in physical dose, an increased relative biological effect also has been observed, which can be explained by the fact that some of the secondary particles from the antiproton annihilation exhibit high-LET properties. Finally, the weakly interacting energetic pions, which are leaving the target volume, may provide a real time feedback on the exact location of the annihilation peak. We have performed dosimetry experiments and investigated the radiobiological properties using the antiproton beam available at CERN, Geneva. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film. Radiobiological experiments were done with V79 WNRE Chinese hamster cells. The radiobiological experiments were repeated with protons and carbon ions at TRIUMF and GSI, respectively, for comparison. Several Monte Carlo particle transport codes were investigated and compared with our experimental data obtained at CERN. The code that matched our data best was used to generate a set of depth dose data at several energies, including secondary particle-energy spectra. This can be used as base data for a treatment planning software such as TRiP. Our findings from the CERN experiments indicate that the biological effect of antiprotons in the plateau region may be reduced by a factor of 4 for the same biological target dose in a spread-out Bragg-peak, when comparing with protons. The extension of TRiP to handle antiproton beams is currently in progress. This will enable us to perform planning studies, where the potential clinical consequences can be examined, and compared to those of other beam modalities such as protons, carbon ions, or IMRT photons.
机译:由于以下原因,反质子作为放射治疗中可能的未来方式很有趣,其原因如下:当快速的反质子穿透物质时,质子和反质子具有几乎相同的停止能力,并且在布拉格峰之前就具有相同的放射生物学特性。但是,当反质子停在布拉格峰时,它们就会歼灭,每个反质子-质子歼灭会释放几乎2 GeV。这些能量的大部分被高能的离子带走,但是反质子的布拉格峰仍在局部增加,每个反质子大约20-30 MeV。除了增加物理剂量外,还观察到增加的相对生物学效应,这可以通过以下事实来解释,即反质子an灭产生的一些次级粒子表现出较高的LET特性。最后,离开目标体积的弱相互作用的高能离子可提供有关feedback灭峰确切位置的实时反馈。我们已经进行了剂量学实验,并使用了位于日内瓦CERN的反质子束研究了放射生物学特性。用电离室,丙氨酸沉淀和放射致变色膜进行剂量测定实验。用V79 WNRE中国仓鼠细胞进行了放射生物学实验。为了进行比较,分别在TRIUMF和GSI上重复了质子和碳离子的放射生物学实验。研究了几种蒙特卡洛粒子传输码,并将其与我们在CERN上获得的实验数据进行了比较。与我们的数据最匹配的代码被用来生成一组在几种能量下的深度剂量数据,包括二次粒子能谱。这可以用作治疗计划软件(例如TRiP)的基础数据。我们从CERN实验获得的结果表明,与质子相比,在展开的布拉格峰中,对于相同的生物学目标剂量,高原区域中反质子的生物学效应可能会降低4倍。 TRiP正在扩展以处理反质子束。这将使我们能够进行计划研究,在其中可以检查潜在的临床后果,并将其与质子,碳离子或IMRT光子等其他束流形式的结果进行比较。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号