...
首页> 外文期刊>Nanotechnology >Nanoscale mechanisms of misfit dislocation propagation in undulated Si1-xGex/Si(100) epitaxial thin films
【24h】

Nanoscale mechanisms of misfit dislocation propagation in undulated Si1-xGex/Si(100) epitaxial thin films

机译:Si1-xGex / Si(100)外延薄膜中失配位错扩展的纳米尺度机理

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoscale lateral variations in the stress field of undulated Si0.7Ge0.3/Si(100) films have been experimentally studied via in situ transmission electron microscopy annealing and through finite element calculations. When annealed at similar to 480 degrees C, misfit dislocations in a 30 nm film (having surface undulations of similar to 70 nm wavelength and similar to 3 nm amplitude) propagated at 80 nm s(-1) average speed but with periodic variations from 0-30 nm s(-1) at the peaks of the undulations to 160-240 nm s(-1) at the troughs. A 2.0 GPa average film stress with variations from 3.2 to 4.4 GPa at the troughs to 0.7-1.2 GPa at the peaks is inferred from the observed dislocation velocities. These stress variations are significantly higher than those calculated from a finite element model of Si0.7Ge0.3/Si with the same surface geometry. Using standard models of dislocation kink dynamics, we have calculated how the effect of high stresses at the undulation troughs would be expected to enhance kink nucleation rates, and have found good agreement between our models and the experimentally observed range of dislocation velocities. These observations demonstrate the potential of probing the nanoscale structure in thin films through local variations of dislocation velocities.
机译:通过原位透射电子显微镜退火和有限元计算,对起伏的Si0.7Ge0.3 / Si(100)薄膜的应力场进行了纳米尺度的横向变化研究。当在相似于480摄氏度的温度下退火时,30 nm薄膜中的失配位错(具有类似于70 nm波长且相似于3 nm振幅的表面起伏)以80 nm s(-1)的平均速度传播,但周期性变化为0在起伏的峰值处为-30 nm s(-1),在波谷处为160-240 nm s(-1)。从观察到的位错速度推断出2.0 GPa的平均膜应力在波谷处从3.2到4.4 GPa到峰值在0.7-1.2 GPa之间变化。这些应力变化明显高于从具有相同表面几何形状的Si0.7Ge0.3 / Si有限元模型计算得到的应力变化。使用位错扭结动力学的标准模型,我们已经计算出如何预期高应力在起伏槽处的作用会增强扭结成核率,并在我们的模型与实验观察到的位错速度范围之间找到了很好的一致性。这些观察结果表明通过位错速度的局部变化来探测薄膜中纳米级结构的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号