...
首页> 外文期刊>Nanotechnology >Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization
【24h】

Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

机译:新生骨的分子纳米力学:矿化使纤维增韧

获取原文
获取原文并翻译 | 示例
           

摘要

Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril).
机译:矿化的胶原原纤维是骨骼的高度保守的纳米结构构件。通过分子动力学模拟和理论分析的结合表明,矿化胶原纤维的特征纳米结构对于其高强度和维持大变形的能力至关重要,这与骨骼的生理作用有关,从而产生强韧材料。对矿化胶原蛋白原纤维大变形下蛋白质和矿物质相的分子机理的分析显示,与无矿物质相的原纤维相比,原纤维增韧机理导致能量耗散的增加。这种纤维状的增韧机制通过在裂纹状缺陷周围形成较大的局部屈服区域来提高抗断裂性,该机制通过允许局部破坏来保护整个结构的完整性。结果,矿化的胶原原纤维能够耐受几百微米大小的微裂纹而不会引起组织的任何宏观破坏,这对于使骨骼重塑可能是必不可少的。分析证明,向胶原蛋白原纤维中添加纳米级小血小板会增加其杨氏模量,屈服强度以及断裂强度。我们发现,矿化的胶原原纤维的杨氏模量为6.23 GPa(胶原原纤维为4.59 GPa),屈服应变为6.7%(胶原原纤维为5%),并且断裂应力为0.6 GPa(相对于胶原原纤维为0.3 GPa)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号