...
首页> 外文期刊>Nanotechnology >In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications
【24h】

In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications

机译:生物医学应用中磁性纳米粒子的运动,加热和可视化的体外表征

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic nanoparticles can be used for a variety of biomedical applications. They can be used in the targeted delivery of therapeutic agents in vivo, in the hyperthermic treatment of cancers, in magnetic resonance (MR) imaging as contrast agents and in the biomagnetic separations of biomolecules. In this study, a characterization of the movement and heating of three different types of magnetic nanoparticles in physiological systems in vitro is made in a known external magnetic field and alternating field respectively. Infra-red (IR) imaging and MR imaging were used to visualize these nanoparticles in vitro. A strong dependence on the size and the suspending medium is observed on the movement and heating of these nanoparticles. First, two of the particles (mean diameter d = 10 nm, uncoated Fe3O4 and d = 2.8 mu m, polystyrene coated Fe3O4 + gamma-Fe2O3) did not move while only a dextran coated nanoparticle (d = 50 nm, gamma-Fe2O3) moved in type 1 collagen used as an in vitro model system. It is also observed that the time taken by a collection of these nanoparticles to move even a smaller distance (5 mm) in collagen (similar to 100 min) is almost ten times higher when compared to the time taken to move twice the distance (10 mm) in glycerol (similar to 10 min) under the same external field. Second, the amount of temperature rise increases with the concentration of nanoparticles regardless of the microenvironments in the heating studies. However, the amount of heating in collagen (maximum change in temperature Delta T-max similar to 9 degrees C at 1.9 mg Fe ml(-1) and 19 degrees C at 3.7 mg Fe ml(-1)) is significantly less than that in water (Delta T-max similar to 15 degrees C at 1.9 mg Fe ml(-1) and 33 degrees C at 3.7 mg Fe ml(-1)) and glycerol (Delta T-max similar to 13.5 degrees C at 1.9 mg Fe ml(-1) and 3 0 degrees C at 3.7 mg Fe ml(-1)). Further, IR imaging provides at least a ten times improvement in the range of imaging magnetic nanoparticles, whereby a concentration of (0-4 mg Fe ml(-1)) could be visualized as compared to (0-0.4 mg Fe ml(-1)) by MR imaging. Based on these in vitro studies, important issues and parameters that require further understanding and characterization of these nanoparticles in vivo are discussed.
机译:磁性纳米颗粒可用于多种生物医学应用。它们可用于体内靶向治疗剂,癌症的高温治疗,磁共振(MR)成像(作为造影剂)以及生物分子的生物磁分离。在这项研究中,分别在已知的外部磁场和交变场中对三种不同类型的磁性纳米粒子在体外生理系统中的运动和加热进行了表征。红外(IR)成像和MR成像用于体外观察这些纳米颗粒。在这些纳米颗粒的运动和加热中观察到对尺寸和悬浮介质的强烈依赖性。首先,两个粒子(平均直径d = 10 nm,未包覆的Fe3O4和d = 2.8μm,聚苯乙烯包覆的Fe3O4 +γ-Fe2O3)不移动,而只有葡聚糖包覆的纳米颗粒(d = 50 nm,γ-Fe2O3)移动了用作体外模型系统的1型胶原蛋白。还可以观察到,与纳米粒子移动两倍的时间(10倍)相比,这些纳米粒子的集合移动胶原蛋白中更小的距离(5毫米)所需的时间(约100分钟)几乎高出十倍相同的外部电场在甘油中(约10分钟)。其次,与加热研究中的微环境无关,温度升高的量随纳米颗粒的浓度而增加。但是,胶原蛋白的加热量(在1.9 mg Fe ml(-1)下为9摄氏度,在3.7 mg Fe ml(-1)下为19摄氏度的最大温度Delta T-max的最大变化)明显小于在水中(Delta T-max在1.9 mg Fe ml(-1)下接近15摄氏度,在3.7 mg Fe ml(-1)在33摄氏度下)和甘油(1.9 mg Fe ml(-1)在13.5摄氏度下相似的Delta T-max Fe ml(-1)和3.7 mg Fe ml(-1)的3 0摄氏度)。此外,IR成像在磁性纳米粒子的成像范围内至少提高了十倍,因此与(0-0.4 mg Fe ml(-)相比,可以看到(0-4 mg Fe ml(-1))的浓度。 1))通过MR成像。基于这些体外研究,讨论了需要在体内进一步了解和表征这些纳米颗粒的重要问题和参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号