...
首页> 外文期刊>Nanotechnology >Topographical and electrical study of contact and Intermittent contact mode InP AFM lithography
【24h】

Topographical and electrical study of contact and Intermittent contact mode InP AFM lithography

机译:接触和间歇接触模式InP AFM光刻的形貌和电学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In order to fabricate nanoscale oxide patterns on an InP(001) surface, local anodization by atomic force microscopy (AFM) contact and intermittent contact modes has been performed. Contact mode results are similar to those obtained with the local anodization of silicon, and mainly limited by the effect of space charge that occurs during the oxide growth. The existence of this space charge associated with the poor dielectric quality of the obtained oxide has been verified by performing scanning capacitance microscopy (SCIVI) measurements. Results for oxidation using intermittent AFM contact mode associated with a modulated voltage are more specific. For a more than two decade variation of probe velocity (0.01-5 mu m s~(-1)), the AFM oxidation introduces no significant changes in the oxide pattern. Experiments on the influence of oxidation time give rise to two regimes. First, for times shorter than 100 ms, a high growth rate is found. Second, for oxidation times longer than 100 ms, we observe an oxide height saturation and a significant decrease of lateral growth rate. These results provide a way to easily control the oxide shape. The space charge neutralization in this mode has also been investigated by SCM. The interesting results for intermittent contact oxidation confirm the capability of this technique to modify a nanoscale InP surface.
机译:为了在InP(001)表面上制造纳米级氧化物图案,已经通过原子力显微镜(AFM)接触和间歇接触模式进行了局部阳极氧化处理。接触模式的结果类似于通过硅的局部阳极氧化获得的结果,并且主要受氧化物生长期间发生的空间电荷的影响所限制。通过执行扫描电容显微镜(SCIVI)测量,已验证了与所获得的氧化物的较差介电质量相关的空间电荷的存在。使用与调制电压相关的间歇AFM接触模式进行氧化的结果更为明确。对于探针速度的超过十倍的变化(0.01-5μm s〜(-1)),AFM氧化不会导致氧化物图形发生明显变化。关于氧化时间的影响的实验产生了两种方案。首先,对于少于100毫秒的时间,发现了很高的增长率。其次,对于超过100 ms的氧化时间,我们观察到氧化物高度饱和,并且横向生长速率显着降低。这些结果提供了一种容易控制氧化物形状的方法。 SCM还研究了这种模式下的空间电荷中和。间歇接触氧化的有趣结果证实了该技术修饰纳米级InP表面的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号