...
首页> 外文期刊>Nanotechnology >Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application
【24h】

Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application

机译:金刚石的摩擦磨损的仿真和实验:一种用于MEMS和NEMS的材料

获取原文
获取原文并翻译 | 示例
           

摘要

To date most of the microelectromechanicalsystem (MEMS) devices have been based on silicon. This is dueto the technological know-how accumulated on the manipulation,machining and manufacturing of silicon. However, only very fewdevices involve moving parts. This is because of the rapid weararising from high friction in these silicon-based systems. Recenttribometric experiments carried out by Gardos on silicon andpolycrystalline diamond (PCD) show that this rapid wear iscaused by a variety of factors, related both to surface chemistryand cohesive energy density of these likely MEMS bearingmaterials. In particular, the 1.8-times stronger C-Cbond indiamond as opposed to the Si-Si bond in the bulk translates into amore than 104-times difference in wear rates of silicon and PCDare controlled by high-fricion-induced surface cracking, and thefriction is controlled by the number of dangling, reconstructed oradsorbate-passivated surface bonds. Therefore, theoretical andtribological characterization of Si and PCDsurfaces is essentialprior to device fabrication to assure reliable MEMS operationunder various atmospheric environments, especially at elevated temperatures.As a part of the rational design and manufacturing of MMSdevices containing moving mechanical assemblies (MEMS-MMA)and especially nanoelectromechanical devices (NEMS), theoryand simulation can play and important role. Predicting systemproperties such as friction and wear, and materials propertiessuch as thermal conductivity is of critical importance formaterials and components to be used in MEMS-MMAs. In thispaper, we present theoretical studies of friction and wearprocesses on diamond surfaces using a steady state moleculardynamics method. We studied the atomic friction of the diamond-(100) surface using an extended bond-order-dependent potentialfor hydrocarbon systems. Unlike traditional empirical potentials,bond order potentials can simulate bond breaking and formationprocesses. Therefore, it is a natural choice to study surfacedynamics under friction and wear. In order to calculate thematerial properties correctly, we have established a consistentapproach to incorporate non-bond interactions into the bondorder potentials. We have also developed an easy-to-use softwareto evaluate the atomic-level friction coefficient for an arbitrarysystem. And interfaced it into a third-party graphical software.
机译:迄今为止,大多数微机电系统(MEMS)器件都基于硅。这是由于在硅的操纵,加工和制造方面积累的技术知识。但是,只有很少的设备涉及运动部件。这是由于在这些基于硅的系统中由于高摩擦而导致的快速磨损。 Gardos最近对硅和多晶金刚石(PCD)进行的摩擦学实验表明,这种快速磨损是由多种因素引起的,这些因素与这些可能的MEMS轴承材料的表面化学性质和内聚能密度有关。特别是,与整体中的Si-Si键相比,C-Cbond金刚石的强度高1.8倍,这意味着硅和PCD的磨损率差异超过104倍,这是由高摩擦引起的表面开裂和摩擦控制的由悬空的,重构的或吸附的钝化的表面键的数量控制。因此,Si和PCD表面的理论和摩擦学表征对于器件制造至关重要,以确保MEMS在各种大气环境下(尤其是在高温下)都能可靠运行。作为包含移动机械组件(MEMS-MMA)的MMS器件合理设计和制造的一部分,尤其是纳米机电装置(NEMS),理论和仿真都可以发挥重要作用。预测系统特性(例如摩擦和磨损)以及材料特性(例如热导率)对于将用于MEMS-MMA的材料和组件至关重要。在本文中,我们使用稳态分子动力学方法对金刚石表面的摩擦和磨损过程进行了理论研究。我们使用碳氢化合物系统的扩展键序依赖性势研究了金刚石(100)表面的原子摩擦。与传统的经验电位不同,键序电位可以模拟键断裂和形成过程。因此,研究摩擦和磨损下的表面动力学是一种自然的选择。为了正确地计算材料性能,我们建立了一致的方法,将非键相互作用纳入键序电位。我们还开发了一种易于使用的软件来评估任意系统的原子级摩擦系数。并将其连接到第三方图形软件中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号