...
首页> 外文期刊>Nanotechnology >Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours
【24h】

Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours

机译:剪切流存在下生物分子驱动的微管移位:重定向行为分析

获取原文
获取原文并翻译 | 示例
           

摘要

We suggest a concept for powering microfluidic devices with biomolecular motors and microtubules to meet the demands for highly efficient microfluidic devices. However, to successfully implement such devices, we require methods for active control over the direction of microtubule translocation. While most previous work has employed largely microfabricated passive mechanical patterns designed to guide the direction of microtubules, in this paper we demonstrate that hydrodynamic shear flow can be used to align microtubules translocating on a kinesin-coated surface in a direction parallel to the fluid flow. Our evidence supports the hypothesis that the mechanism of microtubule redirection is simply that drag force induced by viscous shear bends the leading end of a microtubule, which may be cantilevered beyond its kinesin supports. This cantilevered end deflects towards the flow direction, until it is subsequently bound to additional kinesins; as translocation continues, the process repeats until the microtubule is largely aligned with the flow, to a limit determined by random fluctuations created by thermal energy. We present statistics on the rate of microtubule alignment versus various strengths of shear flow as well as concentrations of kinesin, and also investigate the effects of shear flow on the motility.
机译:我们提出了一种利用生物分子电动机和微管为微流体设备供电的概念,以满足对高效微流体设备的需求。但是,要成功实现此类设备,我们需要对微管移位方向进行主动控制的方法。尽管大多数先前的工作都采用了设计用来引导微管方向的大量微制造的被动机械模式,但在本文中,我们证明了流体动力剪切流可用于对齐在驱动蛋白涂层表面上以与流体流平行的方向移位的微管。我们的证据支持以下假设,即微管重定向的机制仅仅是粘性剪切所引起的拖曳力会使微管的前端弯曲,而该微管的前端可能悬于其驱动蛋白支持物之外。该悬臂端朝流动方向偏转,直到随后与其他驱动蛋白结合为止。随着易位的继续,该过程会重复进行,直到微管与流动在很大程度上对齐为止,达到由热能产生的随机波动确定的极限。我们提供了微管排列速率与剪切流的各种强度以及驱动蛋白浓度的关系的统计数据,还研究了剪切流对运动性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号