...
首页> 外文期刊>Nanotechnology >Molecular alligator clips: a theoretical study of adsorption of S, Se and S-H on Au(111)
【24h】

Molecular alligator clips: a theoretical study of adsorption of S, Se and S-H on Au(111)

机译:分子鳄鱼夹:S,Se和S-H在Au(111)上的吸附的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

For the binding of thiols to Au, the Au-S interaction is decisive for the geometry, bonding strength and transmissivity of the metal-molecule Interface Using ab initio methods we investigate the adsorption of sulfur (S) on the Au(111) surface for different coverages between 0.25 and 1.0 monolayers (ML). Corresponding geometries with adsorbed Se are included to establish possible differences between S- and Se-based metal-molecule interfaces. We furthermore investigate hydrogenation of sulfur-covered Au(111) surfaces to establish the energetics and resulting geometry of adsorption of S-H groups on clean Au(111), using it as a simple model system. For the relatively low coverage of 0.25 ML the S and Se atoms are found to prefer the in-hollow sites, with Se displaying a substantially stronger bond. Increasing the coverage leads to depletion of available free charge in the gold surface, which weakens the bonds to the S (Se). Due to more extensive hybridization, Se is more insensitive to the exact geometry, and the stacking fault position only costs 0.04 eV. At even higher coverage (0.75 ML) the adsorbed atoms hybridize internally and form triatomic molecules situated on top of the Au surface atoms. In S (Se) rich environments this turns out to be the most stable configuration investigated, while in S (Se) poor conditions the surface will adsorb all available S (Se). Forcing the system to adsorb atoms beyond this coverage increases the total energy. For all physically realizable coverages the Au-Se bond is found to be >= 0.25 eV stronger than the corresponding Au-S bond. The Se bond also displays a higher degree of metallicity and should be expected to make a better head group for thiols, for example; this is relevant for both bonding and conductivity. Turning to the hydrogenated S systems we find that surfaces with a high coverage of S only weakly bind H at low partial hydrogenation, while H adsorption in systems with medium and low S concentrations is found to be energetically stable by around 0.3 eV per H atom. The adsorption geometry is sensitive to the concentration: exposed to free S, the system will increase the S coverage and expel H.
机译:对于硫醇与Au的结合,Au-S相互作用对于金属-分子界面的几何形状,结合强度和透射率具有决定性作用。 0.25和1.0单层(ML)之间的不同覆盖率。包括具有吸附Se的相应几何形状,以建立基于S和Se的金属分子界面之间的可能差异。我们还研究了用硫覆盖的Au(111)表面的加氢作用,以建立能量结构以及所得的S-H基团在干净的Au(111)上的吸附几何形状,并将其用作简单的模型系统。对于0.25 ML的相对较低的覆盖率,发现S和Se原子更偏爱空心位点,而Se表现出明显更强的键合性。覆盖率的增加会导致金表面可用的自由电荷耗竭,从而削弱与S(Se)的键合。由于杂交更加广泛,Se对确切的几何形状更加不敏感,并且堆垛层错位置仅花费0.04 eV。在更高的覆盖率(0.75 ML)下,吸附的原子在内部杂交并形成位于Au表面原子顶部的三原子分子。事实证明,在富含S(Se)的环境中,这是最稳定的配置,而在S(Se)较差的条件下,表面将吸收所有可用的S(Se)。迫使系统吸收超出此范围的原子会增加总能量。对于所有可物理实现的覆盖范围,发现Au-Se键比相应的Au-S键强> = 0.25 eV。 Se键还显示出更高的金属性,例如,应该期望它可以形成更好的硫醇头基。这对于粘结和导电性都相关。关于氢化的S体系,我们发现具有高S覆盖率的表面在较低的部分氢化下仅能弱结合H,而在中等和低S浓度的体系中,H的吸附能量稳定,每个H原子约0.3 eV。吸附几何形状对浓度敏感:暴露于游离S时,系统会增加S的覆盖率并排出H。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号