...
首页> 外文期刊>Nano Energy >Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOE-SIMS multi-modal microscopy
【24h】

Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOE-SIMS multi-modal microscopy

机译:锂离子电池正极材料的FIB-SEM和TOE-SIMS多模态显微镜纳米化学制图

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium ion batteries are a leading energy storage technology for electronic portable devices and hybrid electric vehicles. A long-standing challenge to understand Li ion transport is the fact that this light atom escapes direct detection by X-ray techniques (EDX, XRD and XAS) due to weak scattering and emission properties. Simultaneous characterisation of the structure, chemical composition (including Li) and elemental distribution in Li-ion battery materials can reveal the relationship between Li ion transport and structural effects (phase transformation, internal stress), and battery performance and degradation. Nanoscale mapping is achieved by multi-modal correlative microscopy combining focused ion beam and scanning electron microscopy (FIB-SEM) with Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Mapping Li, Mn and Co nanoscale distributions reveals the micro-structural consequences of the electrochemical reaction, and allows identifying Li "trapping" sites within the structure that control materials properties, and open the way towards designing better Li-ion cathode materials with superior performance. (C) 2015 Elsevier Ltd. All rights reserved.
机译:锂离子电池是用于电子便携式设备和混合动力电动汽车的领先能量存储技术。理解锂离子传输的长期挑战是,由于散射和发射特性弱,该轻原子无法通过X射线技术(EDX,XRD和XAS)直接检测。同时表征锂离子电池材料的结构,化学成分(包括Li)和元素分布,可以揭示锂离子迁移与结构效应(相变,内应力)以及电池性能和退化之间的关系。通过将聚焦离子束和扫描电子显微镜(FIB-SEM)与飞行时间二次离子质谱(TOF-SIMS)相结合的多峰相关显微镜,可以实现纳米级标测。绘制Li,Mn和Co纳米级分布的图谱揭示了电化学反应的微观结构后果,并允许在控制材料性能的结构中识别Li“捕获”位点,并为设计性能更好的锂离子阴极材料开辟了道路。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号