...
首页> 外文期刊>Marine and Petroleum Geology >Oxygenation of the Earth's atmosphere-ocean system: A review of physical and chemical sedimentologic responses
【24h】

Oxygenation of the Earth's atmosphere-ocean system: A review of physical and chemical sedimentologic responses

机译:地球大气-海洋系统的充氧:物理和化学沉积学反应的综述

获取原文
获取原文并翻译 | 示例
           

摘要

The Great Oxidation Event (GOE) is one of the most significant changes in seawater and atmospheric chemistry in Earth history. This rise in oxygen occurred between ca. 2.4 and 2.3 Ga and set the stage for oxidative chemical weathering, wholesale changes in ocean chemistry, and the evolution of multicelluar life. Most of what is known about this important event and the subsequent oxygenation history of the Precambrian Earth is based on either geochemistry or "data mining" published literature to understand the temporal abundance of bioelemental sediments. Bioelemental sediments include iron formation, chert, and phosphorite, which are precipitates of the nutrient elements Fe, Si, and P, respectively. Because biological processes leading to their accumulation often produce organic-rich sediment, black shale can also be included in the bioelemental spectrum. Thus, chemistry of bioelemental sediments potentially holds clues to the oxygenation of the Earth because they are not simply recorders of geologic processes, but intimately involved in Earth system evolution. Chemical proxies such as redox-sensitive trace elements (Cu, Cr, V, Cd, Mo, U, Y, Zn, and REE's) and the ratio of stable isotopes (δ~(56)Fe, δ~(53)Cr, δ~(97/95)Mo, δ~(98/95)Mo, δ~(34)S, Δ~(33)S) in bioelemental sediments are now routinely used to infer the oxygenation history of paleo-seawater. The most robust of these is the mass-independent fractionation of sulfur isotopes (MIF), which is thought to have persisted under essentially anoxic conditions until the onset of the GOE at ca. 2.4 Ga. Since most of these proxies are derived from authigenic minerals reflecting pore water composition, extrapolating the chemistry of seawater from synsedimentary precipitates must be done cautiously. Paleoenvironmental context is critical to understanding whether geochemical trends during Earth's oxygenation represent truly global, or merely local environmental conditions. To make this determination it is important to appreciate chemical data are primarily from authigenic minerals that are diage-netically altered and often metamorphosed. Because relatively few studies consider alteration in detail, our ability to measure geochemical anomalies through the GOE now surpasses our capacity to adequately understand them. In this review we highlight the need for careful consideration of the role sedimentology, stratigraphy, alteration, and basin geology play in controlling the geochemistry of bioelemental sediments. Such an approach will fine-tune what is known about the GOE because it permits the systematic evaluation of basin type and oceanography on geochemistry. This technique also provides information on how basin hydrology and post-depositional fluid movement alters bioelemental sediments. Thus, a primary aim of any investigation focused on prominent intervals of Earth history should be the integration of geochemistry with sedimentology and basin evolution to provide a more robust explanation of geochemical proxies and ocean-atmosphere evolution.
机译:大氧化事件(GOE)是地球历史上海水和大气化学中最重大的变化之一。氧气的上升发生在大约2.4和2.3 Ga为氧化化学风化,海洋化学的全面变化以及多细胞生命的演化奠定了基础。关于这一重要事件以及随后的前寒武纪地球氧合作用历史的大多数已知信息都是基于地球化学或“数据挖掘”已发表的文献,以了解生物元素沉积物的时空丰度。生物元素沉积物包括铁形成,石和磷矿,它们分别是营养元素Fe,Si和P的沉积物。由于导致其积累的生物过程通常会产生富含有机物的沉积物,因此黑色页岩也可以包括在生物元素谱中。因此,生物元素沉积物的化学性质可能为地球的氧化提供了线索,因为它们不仅是地质过程的记录者,而且与地球系统的演化密切相关。化学代表,例如对氧化还原敏感的微量元素(Cu,Cr,V,Cd,Mo,U,Y,Zn和REE)和稳定同位素的比率(δ〜(56)Fe,δ〜(53)Cr,现在常规地使用生物元素沉积物中的δ〜(97/95)Mo,δ〜(98/95)Mo,δ〜(34)S,Δ〜(33)S来推断古海水的氧化历史。其中最可靠的是硫同位素(MIF)的质量无关分馏,据信该分馏基本上在缺氧条件下持续存在,直到GOE于约200℃开始。 2.4 Ga。由于这些代理大多数来自反映孔隙水成分的自生矿物,因此必须谨慎地从沉积沉淀物中推断海水的化学性质。古环境对于了解地球氧化过程中的地球化学趋势是代表真正的全球环境,还是仅仅代表局部环境条件至关重要。为了做出此决定,重要的是要了解化学数据主要来自经过假想法改变并经常变质的自生矿物。由于很少有研究会详细考虑更改,因此我们通过GOE测量地球化学异常的能力现在超过了我们充分理解它们的能力。在这篇综述中,我们强调需要仔细考虑沉积学,地层学,蚀变和盆地地质在控制生物元素沉积物地球化学中的作用。这种方法将微调有关GOE的知识,因为它可以对盆地类型和海洋学进行地球化学的系统评价。该技术还提供有关盆地水文学和沉积后流体运动如何改变生物元素沉积物的信息。因此,任何关注地球历史显着间隔的调查的主要目的应该是将地球化学与沉积学和盆地演化相结合,以提供对地球化学代理和海洋-大气演化的更强有力的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号