首页> 外文期刊>Marine and Petroleum Geology >Effects of regional fluid pressure gradients on strain localisation and fluid flow during extensional fault reactivation
【24h】

Effects of regional fluid pressure gradients on strain localisation and fluid flow during extensional fault reactivation

机译:伸展断层再激活过程中区域流体压力梯度对应变局部化和流体流动的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Recent numerical modelling studies demonstrated how pre-existing (geologically older) fault geometries within a rock volume, strongly control both the distribution of strain and fluid flow patterns during extensional fault reactivation. Fault length is particularly important with larger faults tending to accommodate more strain than smaller faults in a given population. In this paper, we explore the effects of various pore fluid pressure gradients on strain distribution and fluid flow. Our 3D models consider a simple fault architecture, with four alternative initial pore pressure gradients based on case study data from the Timor Sea. The results indicate that, in addition to geometric factors, pore fluid pressure gradients have important effects on strain localisation and fluid flow behaviour during fault reactivation. Higher pore fluid pressure gradients lead to additional strain being accommodated and increased throws on larger faults. With lower initial pore fluid pressure gradients, less strain occurs on large faults and a greater portion of the bulk strain is partitioned onto smaller faults which develop relatively larger throws. Higher pore fluid pressures can temporarily lead to greater lateral fluid migration within the reservoir and greater upward fluid discharge along large reactivated faults. Local anomalous pore fluid pressures, such as a small lateral pore pressure gradient or local overpressure within a thin layer, do not strongly impact fault reactivation results. Only high overpressures in the whole regional system seem to markedly alter strain distribution during fault reactivation.
机译:最近的数值模拟研究表明,岩石体积中预先存在的(地质上较旧的)断层几何形状如何在伸展断层重新激活期间强烈地控制应变和流体流型的分布。断层长度特别重要,因为在给定的总体中,较大的断层比较小的断层倾向于承受更大的应变。在本文中,我们探索了各种孔隙流体压力梯度对应变分布和流体流动的影响。我们的3D模型考虑了简单的断层构造,并根据帝汶海的案例研究数据提供了四个备选初始孔隙压力梯度。结果表明,除几何因素外,孔隙流体压力梯度对断层复活过程中的应变局部化和流体流动行为也有重要影响。较高的孔隙流体压力梯度会导致额外的应变被容纳,并且较大断层上的投掷量也会增加。使用较低的初始孔隙流体压力梯度,在较大的断层上发生的应变较小,并且大部分的整体应变被分配到较小的断层上,从而产生相对较大的投掷。较高的孔隙流体压力会暂时导致更大的横向流体运移到储层内,并沿着较大的再活化断层导致更大的向上的流体排放。局部异常的孔隙流体压力,例如较小的横向孔隙压力梯度或薄层内的局部超压,不会强烈影响断层的复活结果。在整个断层复活过程中,只有整个区域系统中的高超压似乎会显着改变应变分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号