...
首页> 外文期刊>Functional Plant Biology >Control of glycerol biosynthesis under high salt stress in Arabidopsis.
【24h】

Control of glycerol biosynthesis under high salt stress in Arabidopsis.

机译:在高盐胁迫下拟南芥中甘油生物合成的控制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Loss-of-function and gain-of-function approaches were utilised to detect the physiological importance of glycerol biosynthesis during salt stress and the role of glycerol in conferring salt tolerance in Arabidopsis. The salt stress experiment involved wild type (WT) and transgenic Arabidopsis overexpressing the yeast GPD1 gene (analogue of Arabidopsis GLY1 gene). The experiment also involved the Arabidopsis T-DNA insertion mutants gly1 (for suppression of glycerol 3-phosphate dehydrogenase or G3PDH), gli1 (for suppression of glycerol kinase or GK), and act1 (for suppression of G3P acyltransferase or GPAT). We evaluated salt tolerance levels, in conjunction with glycerol and glycerol 3-phosphate (G3P) levels and activities of six enzymes (G3PDH, ADH (alcohol dehydrogenase), ALDH (aldehyde dehydrogenase), GK, G3PP (G3P phosphatase) and GLYDH (glycerol dehydrogenase)) involved in the glycerol pathway. The GPD1 gene was used to overexpress G3PDH, a cytosolic NAD+-dependent key enzyme of cellular glycerol biosynthesis essential for growth of cells under abiotic stresses. T2 GPD1-transgenic plants and those of the two mutants gli1 and act1 showed enhanced salt tolerance during different growth stages as compared with the WT and gly1 mutant plants. These results indicate that the participation of glycerol, rather than G3P, in salt tolerance in Arabidopsis. The results also indicate that the gradual increase in glycerol levels in T2 GPD1-transgenic, and gli1 and act1 mutant plants as NaCl level increases whereas they dropped at 200 mM NaCl. However, the activities of the G3PDH, GK, G3PP and GLYDH at 150 and 200 mM NaCl were not significantly different. We hypothesise that mechanism(s) of glycerol retention/efflux in the cell are affected at 200 mM NaCl in Arabidopsis.
机译:利用功能丧失和功能获得方法来检测盐胁迫期间甘油生物合成的生理重要性以及甘油在拟南芥中赋予耐盐性的作用。盐胁迫实验涉及野生型(WT)和过表达酵母GPD1基因的拟南芥(拟南芥GLY1基因的类似物)。该实验还涉及拟南芥T-DNA插入突变体gly1(用于抑制3-磷酸甘油脱氢酶或G3PDH),gli1(用于抑制甘油激酶或GK)和act1(用于抑制G3P酰基转移酶或GPAT)。我们结合甘油和3-磷酸甘油(G3P)的水平以及六种酶(G3PDH,ADH(酒精脱氢酶),ALDH(醛脱氢酶),GK,G3PP(G3P磷酸酶)和GLYDH(甘油)的活性评估了耐盐性水平脱氢酶))参与甘油途径。 GPD1基因被用于过量表达G3PDH,G3PDH是非生物胁迫下细胞生长所必需的细胞甘油NAD + 依赖性细胞甘油生物合成关键酶。与WT和gly1突变体植物相比,T 2 GPD1转基因植物以及两个突变体gli1和act1的植物在不同的生长阶段显示出更高的耐盐性。这些结果表明甘油而不是G3P参与拟南芥的耐盐性。结果还表明,随着NaCl水平的升高,T 2 GPD1转基因以及gli1和act1突变体植物中的甘油水平逐渐升高,而在200 mM NaCl时,甘油水平下降。但是,G3PDH,GK,G3PP和GLYDH在150和200 mM NaCl的活性没有显着差异。我们假设拟南芥中200 mM NaCl时细胞中甘油保留/外排的机制受到影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号