首页> 外文期刊>Field Crops Research >The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber
【24h】

The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber

机译:温度梯度室内近场条件下大豆种子生长特性对温度升高的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Global warming and increasing soybean production in warm regions require a quantitative understanding of how yield-formation processes of this crop are affected by high temperatures. The response of soybean growth to increased temperature was examined under a controlled environment that mimics field conditions using a temperature gradient chamber (TGC). In 2009 and 2010, the (cv) Enrei cultivar was grown in soil culture beds (1 m x 24m) in two TGCs. Three temperature treatments, T-a, (near ambient temperature), T-a + 1 (ambient temperature + 1 degrees C) and T-a + 3 (ambient temperature + 3 degrees C), were established by dividing the rows along which the temperature gradient was created. In 2009, only cvs. Ryuho and Suzuyutaka were grown under two temperature regimes. The mean temperatures in 2009 and 2010 for the entire growth period ranged from 25.9 to 28.7 degrees C and from 27.1 to 30.1 degrees C for T-a and T-a + 3, respectively. The individual seed growth rate (SGR) was determined as the linear coefficient of the single-seed weight vs. time (d), based on periodic plant harvesting. The effective seed-filling period (EFP) was calculated by dividing the final single-seed weight by the SGR. The flowering date was affected by increased temperature only in 2010. The days to beginning of seed fill and maturity were longer under higher temperatures. The SGR was slower at T-a + 3 (7.1 and 5.9 mg seed(-1) d(-1) in 2009 and 2010, respectively) than at T-a (8.5 and 7.5 mg seed(-1) d(-1) in 2009 and 2010, respectively), whereas the EFP was longer under high temperatures than at near ambient temperature. The final single-seed weight was reduced by increased temperatures. The temperature had no significant effect on cell volume, but the number of cells per cotyledon was smaller at T-a + 3 (3.4 x 10(6) and 2.6 x 10(6) in 2009 and 2010, respectively) than at T-a (5.0 x 10(6) and 4.3 x 10(6)). The results indicated that an increase in temperature by 3 C in warm regions decreased the seed size of soybean by decreasing the cell number and SGR. (C) 2012 Elsevier B.V. All rights reserved.
机译:全球变暖和温暖地区大豆产量的增长需要对高温如何影响该作物的成长期形成过程进行定量了解。使用温度梯度室(TGC)在模拟田间条件的受控环境下检查了大豆生长对升高的温度的响应。在2009年和2010年,(cv)Enrei品种在两个TGC的土壤培养床(1 m x 24m)中生长。通过划分沿其创建温度梯度的行,建立了三种温度处理,T-a(接近环境温度),T-a + 1(环境温度+ 1摄氏度)和T-a + 3(环境温度+3摄氏度)。在2009年,只有简历。 Ryuho和Suzuyutaka在两种温度下生长。 T-a和T-a + 3的整个生育期在2009年和2010年的平均温度分别为25.9至28.7摄氏度和27.1至30.1摄氏度。基于定期收获的植物,将单个种子的生长速率(SGR)确定为单种子重量与时间(d)的线性系数。有效种子填充期(EFP)是通过将最终单种子重量除以SGR来计算的。开花日期仅在2010年受温度升高的影响。在较高温度下,开始充满种子和成熟的天数更长。 Ta + 3的SGR(分别为2009和2010年的7.1和5.9 mg种子(-1)d(-1)分别比2009年Ta的8.5和7.5 mg种子(-1)d(-1)较慢。和2010年),而EFP在高温下的时间要长于接近环境温度的时间。最终单子重因温度升高而降低。温度对细胞体积没有显着影响,但每个子叶的细胞数在Ta + 3时(分别在2009年和2010年分别为3.4 x 10(6)和2.6 x 10(6))比在Ta(5.0 x 10(6)和4.3 x 10(6))。结果表明,温暖地区温度升高3℃,通过减少细胞数量和SGR减少了大豆的种子大小。 (C)2012 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号