...
首页> 外文期刊>Global change biology >Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum
【24h】

Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum

机译:森林下层植物和土壤微生物对实验性干旱和热脉冲事件的响应:维持连续性的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant-soil-microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant-microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat-pulse event, and followed microbial community dynamics over a time period of 28days. During the treatment, we labeled the canopy with (CO2)-C-13 with the goal of (i) determining the strength of plant-microbe carbon linkages under control, drought, heat and heat-drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant-soil carbon continuum based on C-13-labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short-term changes in the active microbial community. The treatments did not sever within-plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High-throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat-drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant-soil-microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.
机译:随着全球气候变化,干旱持续时间和强度预计将增加。可用水量和温度的变化如何影响植物-土壤-微生物的综合响应仍然不确定。我们从山毛榉(Fagus sylvatica L.)森林中挖出土壤块体,从而保持林下植物微生物群落的完整,施加了极端气候事件,包括干旱和/或单个热脉冲事件,并且在整个微生物群落动态为期28天。在处理过程中,我们用(CO2)-C-13标记了树冠,目的是(i)确定在控制,干旱,高温和热干旱处理下植物-微生物碳键的强度,以及(ii)表征微生物群它们与基于C-13标记的PLFA的植物-土壤碳连续体紧密相连。此外,我们使用了来自Ah地平线的细菌的16S rRNA测序来确定活性微生物群落的短期变化。在整个实验过程中,这些处理并未切断工厂内的运输,地下的碳汇仍然活跃。根据标记碳在根和微生物PLFA上的相对分布,我们确定在环境胁迫下土壤微生物似乎具有更强的碳汇强度。 16S rRNA的高通量测序揭示了不同治疗方案中微生物群落转移的多种轨迹。高温与干旱相结合对微生物多样性具有明显的负面影响,并导致微生物群落结构发生明显变化,这也与PLFA中发现的最低标记水平相对应。因此,在植物受到最严重影响的热干旱处理中,微生物丰度的变化最大。我们的研究表明,我们可能期望极端环境压力引起的微生物群落的许多变化将是植物-土壤-微生物的动态变化所致,而不是干旱和高温对土壤微生物的直接影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号