...
首页> 外文期刊>Global change biology >Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments
【24h】

Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments

机译:亚北极气候变化对土壤有机质矿化对不稳定碳的响应的微生物控制

获取原文
获取原文并翻译 | 示例
           

摘要

Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed priming'. We investigated how warming (+1.1 degrees C over ambient using open top chambers) and litter addition (90gm(-2)yr(-1)) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed preferential substrate utilization' or negative apparent priming', while the stimulated N mineralization responses echo recent reports of real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use.
机译:全球土壤碳(C)的一半保存在高纬度系统中。气候变化将使这些气候变暖,并向含碳量更不稳定的植物群落转变。不稳定碳还可以增加天然土壤有机质(SOM)的流失率;一种称为启动的现象。我们研究了亚北极的变暖(使用开放式顶室在环境中+1.1摄氏度)和垃圾添加(90gm(-2)yr(-1))如何影响SOM矿化对底物及其微生物基础的敏感性。不稳定的C似乎可以在数小时内将SOM中的C矿化抑制高达60%。相反,来自SOM的N的矿化作用最多可激发300%。这些反应迅速发生,与微生物的演替动力学无关,提示分解代谢反应。单独考虑,不稳定的C抑制C矿化与先前报道的被称为“优先基质利用”或“负表观底吸”的发现是相容的,而受激的N矿化反应则呼应了SOM矿化的真正底吸的最新报道。但是,必须将来自同一SOM来源的C和N矿化反应一起解释:这表明微生物SOM的使用量减少了,转移到了富含N的组分上。这一发现突出表明,仅考虑C方面的SOM可能是简单化,不会捕获SOM分解中的所有更改。在具有较高真菌优势的气候变化处理中,对氮的选择性开采增加了。总之,不稳定的C似乎触发了常驻微生物群落的分解代谢反应,从而使SOM开采转向了富氮成分。随着真菌优势度的提高而增加的效果。从这些发现可以推断,预计的灌木丛在亚弧中的扩张可能会导致微生物对SOM的使用发生变化,选择性地开采富含N的成分,从而减少SOM的总使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号