...
首页> 外文期刊>Global change biology >Bivalve aquaculture-environment interactions in the context of climate change
【24h】

Bivalve aquaculture-environment interactions in the context of climate change

机译:气候变化背景下双壳类水产养殖与环境的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamicx7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve-phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.
机译:海岸带受到气候变化驱动因素影响的风险,例如海洋变暖,海平面上升和降水状况的变化。生态系统对这些驱动因素的响应高度依赖于其变化幅度,还取决于诸如海湾形态和河流流量等物理特征,它们在水的停留时间和河口功能中起着关键作用。这些考虑因素对于双壳类水产养殖场特别重要,在这些场中养殖的生物量可以改变生态系统动态。气候变化,自然和水产养殖驱动因素的结合可导致协同/对抗和非线性过程。构建了空间显式模型,以探索物理环境(海湾地貌类型,淡水输入),气候变化驱动因素(海平面,温度,降水)和水产养殖(双壳类,种群)对生态系统功能的影响。析因设计导致336种情况(48个水动力x7管理)。模型结果表明,物理环境控制着河口的功能,因为它影响初级生产力(由河底养分主导的自下而上控制)和与开阔海洋的水平对流(以海湾地貌类型为主)。双壳类水产养殖的强度最终决定了双壳类-浮游植物的营养相互作用,其范围可以从氨排泄触发的自下而上控制到通过进食的自上而下控制。结果还表明,温度是最主要的气候变化驱动因素,因为温度会影响体温升高的生物体(例如浮游动物和双壳类)的代谢,最终导致浮游植物的自顶向下压力随之增加。鉴于养殖物种的热耐受性不同,温度对于从失败者中选出优胜者也很关键,在此数值实验中测试的特定条件下,有益于Crassostrea virginica胜过Mytilus edulis。一般而言,预计在存在双壳类水产养殖的情况下,在气候变化下,河流宽阔且与开放海洋的交换量高的海湾将更具弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号