...
首页> 外文期刊>Global change biology >Modelling night-time ecosystem respiration by a constrained source optimization method [Review]
【24h】

Modelling night-time ecosystem respiration by a constrained source optimization method [Review]

机译:通过约束源优化方法对夜间生态系统呼吸进行建模[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night-time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed 'Constrained Source Optimization' or CSO, which couples a localized near-field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher-order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least-square fashion. The proposed method was field-tested using 1 year of 30-min mean CO2 concentration and CO2 flux measurements collected within a 17-year-old (in 1999) even-aged loblolly pine Pinus taeda U stand in central North Carolina. Eddy-covariance flux measurements conditioned on large friction velocity, leaf-level porometry and forest-floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above-ground plant components (c. 214 g Cm-2 year(-1)) and forest floor (c.989 g Cm(-2)year(-1)) for estimating gross primary production (c.1800 g Cm(-2)year(-1)) with a NEE of c. 605 g Cm(-2)year(-1) for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy-covariance NEE and chamber-based component flux measurements.
机译:量化生态系统碳预算的主要挑战之一是正确量化夜间生态系统呼吸的强度。当可测得的平均CO2浓度分布图和夜间速度统计数据可用时,逆拉格朗日色散分析提供了一种解决该问题的有前途的方法。已开发出一种称为“约束源优化”或CSO的逆方法,该方法将湍流扩散的局部近场理论(LNF)与呼吸源结合在一起,以估算生态系统呼吸的季节和年度组成部分。提出的方法的主要优点是可变叶面积密度对流量统计的影响可以通过高阶封闭原理明确解决。在CSO中,在优化关键生理参数以最小二乘法恢复测得的平均浓度分布后计算源分布。在北卡罗来纳州中部一个17岁(1999年)均匀年龄的火炬松松阔松林中收集的1年30分钟平均CO2浓度和CO2通量测量值对提出的方法进行了现场测试。以大摩擦速度为条件的涡流协方差通量测量,叶面孔隙率法和林底呼吸室测量被用于评估CSO模型的性能。 CSO方法对生态系统呼吸产生了合理的估计,与白天的净生态系统交换(NEE)度量结合使用时,可以估计生态系统的初级生产总值。我们采用CSO方法对地上植物成分(c。214 g Cm-2 year(-1))和林地(c.989 g Cm(-2)year(-1))的年度呼吸进行建模,以进行估算初级生产总值(c.1800 g Cm(-2)year(-1)),NEE为c。该松树林生态系统的605 g Cm(-2)year(-1)。我们得出的结论是,CSO方法可以利用常规的CO2浓度曲线测量值来证实来自涡度协方差NEE和基于室的成分通量测量值的森林碳平衡估计值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号