...
首页> 外文期刊>Global change biology >Nitrous oxide fluxes in estuarine environments: response to global change
【24h】

Nitrous oxide fluxes in estuarine environments: response to global change

机译:河口环境中的一氧化二氮通量:对全球变化的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrous oxide is a powerful, long-lived greenhouse gas, but we know little about the role of estuarine areas in the global N2O budget. This review summarizes 56 studies of N2O fluxes and associated biogeochemical controlling factors in estuarine open waters, salt marshes, mangroves, and intertidal sediments. The majority of in situ N2O production occurs as a result of sediment denitrification, although the water column contributes N2O through nitrification in suspended particles. The most important factors controlling N2O fluxes seem to be dissolved inorganic nitrogen (DIN) and oxygen availability, which in turn are affected by tidal cycles, groundwater inputs, and macrophyte density. The heterogeneity of coastal environments leads to a high variability in observations, but on average estuarine open water, intertidal and vegetated environments are sites of a small positive N2O flux to the atmosphere (range 0.15-0.91; median 0.31; Tg N2O-N yr(-1)). Global changes in macrophyte distribution and anthropogenic nitrogen loading are expected to increase N2O emissions from estuaries. We estimate that a doubling of current median NO3- concentrations would increase the global estuary water-air N2O flux by about 0.45 Tg N2O-N yr(-1) or about 190%. A loss of 50% of mangrove habitat, being converted to unvegetated intertidal area, would result in a net decrease in N2O emissions of 0.002 Tg N2O-N yr(-1). In contrast, conversion of 50% of salt marsh to unvegetated area would result in a net increase of 0.001 Tg N2O-N yr(-1). Decreased oxygen concentrations may inhibit production of N2O by nitrification; however, sediment denitrification and the associated ratio of N2O:N-2 is expected to increase.
机译:一氧化二氮是一种功能强大且寿命长的温室气体,但我们对河口地区在全球N2O预算中的作用了解甚少。这篇综述总结了河口开放水域,盐沼,红树林和潮间带沉积物中N2O通量及其相关生物地球化学控制因素的56项研究。尽管水柱通过悬浮颗粒中的硝化作用贡献了N2O,但大部分原位N2O的产生是由于沉积物的反硝化作用。控制N2O通量的最重要因素似乎是溶解的无机氮(DIN)和氧气的可用性,而潮汐周期,地下水输入量和大型植物密度又会影响它们的溶解性。沿海环境的异质性导致观测结果的高度可变性,但在平均河口开放水域,潮间带和植被环境中,N2O通向大气的流量很小(范围0.15-0.91;中位数0.31; Tg N2O-N yr( -1))。大型植物分布和人为氮含量的全球变化预计将增加河口的N2O排放。我们估计,当前NO3-浓度的中位数加倍将使全球河口水-空气N2O通量增加约0.45 Tg N2O-N yr(-1)或约190%。红树林栖息地丧失50%,转换为无植被的潮间带,将导致N2O排放净减少0.002 Tg N2O-N yr(-1)。相反,将50%的盐沼转化为无植被的区域将导致净增加0.001 Tg N2O-N yr(-1)。降低的氧气浓度可能会抑制硝化作用产生N2O。但是,沉积物的反硝化作用以及相关的N2O:N-2比例有望增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号