...
首页> 外文期刊>Global change biology >Terrestrial gross primary production inferred from satellite fluorescence and vegetation models
【24h】

Terrestrial gross primary production inferred from satellite fluorescence and vegetation models

机译:根据卫星荧光和植被模型推断出的陆地初级总产值

获取原文
获取原文并翻译 | 示例
           

摘要

Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8PgCyr(-1) from 2010 to 2012, with reduced GPP in northern forests (similar to 3.6PgCyr(-1)) and enhanced GPP in tropical forests (similar to 3.7PgCyr(-1)). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
机译:确定地面总初级生产量(GPP)的时空分布是关闭地球碳预算的关键步骤。动态全球植被模型(DGVM)提供了有关GPP变异性的机理见解,但在预测研究欠佳的地区对气候的响应方面存在分歧。太阳诱导的叶绿素荧光(SIF)遥感的最新进展为GPP提供了直接的全球观测限制的新可能性。在这里,我们采用了一种最佳估计方法,从八个DGVM的集合中推断GPP的全球分布,这些DGVM受来自温室气体观测卫星(GOSAT)的SIF的全局测量值的约束。将这些估计值与北美,欧洲和热带南美的通量塔数据进行比较,并仔细考虑模型,GOSAT和通量塔之间的比例差异。从2010年到2012年,GOSAT SIF与DGVM的同化导致全球生产力从北纬向7-8PgCyr(-1)的热带重新分布,北部森林的GPP降低(类似于3.6PgCyr(-1)),GPP增强在热带森林中(类似于3.7PgCyr(-1))。这导致了季节周期结构的改善,包括亚马逊盆地内热带森林中较早的旱季GPP损失和峰谷GPP增强,以及北部农田和落叶林的生长季节长度减少。在高峰生产率期间,预测GPP的不确定性(由DGVM的传播估计)减少了40-70%,这表明GOSAT SIF与模型的同化非常适合进行基准测试。我们得出的结论是,卫星荧光为量化GPP对气候驱动因素的响应以及限制碳循环演变预测的潜力提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号