...
首页> 外文期刊>Global change biology >Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models
【24h】

Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models

机译:通过空间测量叶绿素荧光的陆地生物圈模型估算植被的光合能力

获取原文
获取原文并翻译 | 示例
           

摘要

Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (V-cmax) is a key control parameter of photosynthetic capacity. Even though V-cmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to V-cmax at the ecosystem level, and present an approach to invert V-cmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal V-cmax and SIF which are used to solve the inverse problem. We evaluate our V-cmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our V-cmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101molm(-2)s(-1), respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying V-cmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed V-cmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved V-cmax estimates from SIF are used, with R-2 for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of space-based SIF data as a proxy for photosynthetic capacity and suggest the potential for global, time-resolved estimates of V-cmax.
机译:陆地生物圈模型的光合作用模拟通常基于Farquhar模型,其中最大羧化速率(V-cmax)是光合作用能力的关键控制参数。尽管已知V-cmax会响应环境控制而在空间和时间上发生很大变化,但通常会在模型中使用与工厂功能类型相关的列表值对它进行参数化。遥感可用于产生光合作用效率的空间连续和时间分辨的视图,但是基于光谱反射率的传统植被观测与植物光化学过程没有直接联系。或者,近期对太阳诱导的叶绿素荧光(SIF)的星载测量可为光合作用模拟提供观测约束。在这里,我们显示了从太空顶盖SIF的测量值在生态系统水平上对V-cmax敏感,并提出了一种从SIF数据反转V-cmax的方法。我们使用土壤盖层的光合作用和能量观测(SCOPE)平衡模型来推导季节性V-cmax和SIF之间的经验关系,以解决反问题。我们使用基于空间的SIF检索评估了美国中西部六个农业通量塔站点的V-cmax估计方法。我们的V-cmax估算值与玉米和大豆植物的文献值非常吻合(分别为37和101molm(-2)s(-1)的平均值),并显示出合理的季节性模式。通过与具有固定V-cmax值的模拟进行比较,测试了更新后的季节性变化V-cmax参数化对模拟总初级生产力(GPP)的影响。针对通量塔观测的验证表明,当使用我们从SIF进行时间分辨的V-cmax估计时,GPP和光利用效率的仿真显着改善,GPP比较的R-2从0.85增加到0.93,光利用效率从0.44增加至0.83。我们的研究结果支持使用空基SIF数据作为光合作用能力的替代指标,并暗示了对V-cmax进行全球时间分辨估计的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号