...
首页> 外文期刊>Global change biology >Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study
【24h】

Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study

机译:切萨皮克湾湿地海平面上升,温度和降水增加影响植物和生态系统对二氧化碳升高的响应:一项为期28年的研究综述

获取原文
获取原文并翻译 | 示例
           

摘要

An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S.patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.
机译:1987年开始的一项有关切萨皮克湾微咸湿地的大气CO2升高影响的正在进行的实地研究,是对CO2升高对生态系统的影响进行的持续时间最长的调查,它是独一无二的。自研究开始以来,大气中的CO2增加了18%,海平面上升了20cm,生长季节的温度变化幅度与21世纪全球变暖的预期范围大致相同。这篇评论回顾了这项研究的线索,这些线索是关于海平面上升,温度和降水的影响与大气中高浓度的二氧化碳相互作用如何改变C3和C4光合物种的生理,碳同化,蒸散,植物和生态系统氮以及分布的线索。咸湿地的植物群落海平面上升导致湿地Scirpus olneyi C3种群向更高海拔转移,取代了Spartina patens C4种群。通过增加芽和根的密度和生物量,净生态系统产量,溶解的有机和无机碳以及甲烷的产量,可以测量出鞘翅目C3物种中CO2刺激的碳同化水平。但是升高的二氧化碳也减少了草S.patens C4的生物量。较高的CO2处理降低了枝条,根和总冠层氮的组织氮浓度,这与生态系统的呼吸减少有关。生态系统净产量是通过土壤盐分的降水来介导的:高盐度降低了二氧化碳对生态系统净产量的影响,在严重干旱的年份中该值为零。在整个研究的28年中,Scirpus C3物种不断增加的CO2刺激芽密度。这项研究的结果表明,不断增加的二氧化碳可以通过刺激碳同化,增加根系分泌物的固氮能力,减少暗呼吸以及提高水和氮的利用效率,为生态系统增加大量的碳。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号