...
首页> 外文期刊>Global change biology >Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions
【24h】

Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions

机译:跨海洋生命域的气候敏感性:进化适应的限制影响物种相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.
机译:古细菌,细菌和Eukarya等所有领域的生物都将以不同的脆弱性来应对气候变化,从而导致物种分布,共存和相互作用的变化。确定生物在所有领域发挥作用的统一原则将有助于对这些变化及其对生态系统变化的影响进行因果关系理解。例如,在有限的温度范围内所有生物的功能专一导致我们要求统一的功能原因。生物还专门研究缺氧或各种氧气,动植物取决于高氧气含量。在这里,我们在对海洋生物可用数据的荟萃分析中,特别是针对特定领域的限制,确定了热范围,生长的热限制和临界低(低氧)氧浓度作为耐受性的代表。为了解释观察到的模式和差异,我们定义和量化了来自所有领域的物种间生物复杂性的替代指标。复杂性的提高导致热(和低氧)耐受性从古细菌到细菌再到单细胞,然后是多细胞Eukarya。在各个域内和跨域,特定分类群的耐受极限可能反映了该物种对适应和适应的最终进化极限。我们假设结构和功能的分类单元特异性复杂性上升,将有机体限制在较窄的环境范围内。像古细菌和一些细菌那样的低复杂性为极端环境下的生活提供了选择。在最温暖的海洋中,最高温度达到并将超过对多细胞动物,植物和单细胞浮游生物的生存的永久限制。因此,较小,较不复杂的单细胞Eukarya,细菌和古细菌将在未来,更温暖和低氧的海洋中受益并占主导地位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号