...
首页> 外文期刊>Global change biology >Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.
【24h】

Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

机译:重新评估北太平洋的政权转移:为了解释年代际尺度的生物变异性,必须增加气候变化和商业捕鱼。

获取原文
获取原文并翻译 | 示例
           

摘要

In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Nino-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations.
机译:在北太平洋基本上没有过度捕捞的地区,气候制度的转变-低频气候变异模式的突然变化-被视为十年尺度生态变异的主要驱动力。我们评估了主要的气候变率模式的能力[太平洋年代际振荡(PDO),北太平洋回转振荡(NPGO),北极涛动(AO),太平洋北美模式(PNA),北太平洋指数(NPI),厄尔尼诺(El Nino) -南方涛动(ENSO)]解释了北太平洋两个生态系统(阿拉斯加湾和白令海)的十年尺度(1965-2008)气候和生物变异性模式。我们的响应变量是四个区域气候参数的第一主要成分(PC1)[海表温度(SST),海平面压力(SLP),淡水输入,冰盖]和36个生物时间序列中的PC 1-2 [生产鲑鱼(Oncorhynchus spp。),底层鱼,鲱鱼(Clupea pallasii),虾和水母的数量或丰度]。我们发现,仅气候模式并不能解释研究区域的生态变异性。仅调用气候模式的线性模型(针对气候PC1)和广义加性模型(针对生物学PC1-2)都产生了具有明显时间趋势的残差,这表明这些模型未能捕捉到生态变异的连贯模式。但是,当将剩余气候趋势和商业渔业捕捞的时间序列用作其他候选变量时,生物学PC1-2的所得模型将满足独立残差的假设,并且仅从气候模式方面就预测能力而言就表现出色。通过效应量和赤池权重的测量,残留的气候趋势是解释生物学PC1变异性的最重要变量,而商业捕获则是生物学PC2的最重要变量。与生物学PC1-2紧密相关的生物分类的气候敏感性和开发历史模式为这些建模结果提供了合理的机制解释。我们的研究结果表明,即使在没有过度捕捞的情况下,以及在受内部气候变异性强烈影响的地区,也只能在其他生态系统扰动的背景下才能理解气候变化的影响。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号