...
首页> 外文期刊>Global change biology >Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA.
【24h】

Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA.

机译:CO 2 浓度升高对美国中西部大豆和玉米农业生态系统生产力和表面能收支的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; however, significant uncertainty remains in model simulations of this vegetation response and its impacts. Data from in situ field experiments provide evidence that previous modeling studies may have overestimated the increase in productivity at elevated [CO2], and the impact on large-scale water cycling is largely unknown. We parameterized the Agro-IBIS dynamic global vegetation model with observations from the SoyFACE experiment to simulate the response of soybean and maize to an increase in [CO2] from 375 ppm to 550 ppm. The two key model parameters that were found to vary with [CO2] were the maximum carboxylation rate of photosynthesis and specific leaf area. Tests of the model that used SoyFACE parameter values showed a good fit to site-level data for all variables except latent heat flux over soybean and sensible heat flux over both crops. Simulations driven with historic climate data over the central USA showed that increased [CO2] resulted in decreased latent heat flux and increased sensible heat flux from both crops when averaged over 30 years. Thirty-year average soybean yield increased everywhere (ca. 10%); however, there was no increase in maize yield except during dry years. Without accounting for CO2 effects on the maximum carboxylation rate of photosynthesis and specific leaf area, soybean simulations at 550 ppm overestimated leaf area and yield. Our results highlight important model parameter values that, if not modified in other models, could result in biases when projecting future crop-climate-water relationships.
机译:植被对大气二氧化碳浓度([CO 2 ])增加的生理反应改变了生产力,表面能和水通量。评估未来气候变化需要量化此响应。许多全球气候模式解释了这种反应。然而,在这种植被响应及其影响的模型模拟中仍然存在很大的不确定性。原位野外实验的数据提供了证据,表明先前的建模研究可能高估了[CO 2 ]升高时的生产率提高,并且对大规模水循环的影响尚不清楚。我们使用SoyFACE实验的观察参数化了Agro-IBIS动态全球植被模型,以模拟大豆和玉米对[CO 2 ]从375 ppm增加到550 ppm的响应。发现随[CO 2 ]而变化的两个关键模型参数是光合作用的最大羧化速率和比叶面积。使用SoyFACE参数值的模型测试表明,除大豆上的潜热通量和两种农作物的显热通量外,所有变量均与现场水平数据非常吻合。在美国中部以历史气候数据驱动的模拟表明,[CO 2 ]的增加会导致两种农作物平均30年的平均潜热通量减少和显热通量增加。各地平均三十年大豆单产都提高了(约10%)。但是,除干旱年份外,玉米单产没有增加。在不考虑CO 2 对光合作用的最大羧化速率和特定叶面积的影响的情况下,在550 ppm处的大豆模拟高估了叶面积和单产。我们的结果突出了重要的模型参数值,如果未在其他模型中进行修改,则在预测未来的作物-气候-水关系时可能会导致偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号