...
首页> 外文期刊>Global change biology >Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 2. Carbon balance
【24h】

Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 2. Carbon balance

机译:在多模型集成实验中诊断和评估陆地生态系统模型的不确定性:2.碳平衡

获取原文
获取原文并翻译 | 示例
           

摘要

This paper examines carbon stocks and their relative balance in terrestrial ecosystems simulated by Biome-BGC, LPJ, and CASA in an ensemble model experiment conducted using the Terrestrial Observation and Prediction System. We developed the Hierarchical Framework for Diagnosing Ecosystem Models to separate the simulated biogeochemistry into a cascade of functional tiers and examine their characteristics sequentially. The analyses indicate that the simulated biomass is usually two to three times higher in Biome-BGC than LPJ or CASA. Such a discrepancy is mainly induced by differences in model parameters and algorithms that regulate the rates of biomass turnover. The mean residence time of biomass in Biome-BGC is estimated to be 40-80 years in temperate/moist climate regions, while it mostly varies between 5 and 30 years in CASA and LPJ. A large range of values is also found in the simulated soil carbon. The mean residence time of soil carbon in Biome-BGC and LPJ is similar to 200 years in cold regions, which decreases rapidly with increases of temperature at a rate of similar to 10 yr degrees C-1. Because long-term soil carbon pool is not simulated in CASA, its corresponding mean residence time is only about 10-20 years and less sensitive to temperature. Another key factor that influences the carbon balance of the simulated ecosystem is disturbance caused by wildfire, for which the algorithms vary among the models. Because fire emissions are balanced by net ecosystem production (NEP) at steady states, magnitudes, and spatial patterns of NEP vary significantly as well. Slight carbon imbalance may be left by the spin-up algorithm of the models, which adds uncertainty to the estimated carbon sources or sinks. Although these results are only drawn on the tested model versions, the developed methodology has potential for other model exercises.
机译:本文在使用陆地观测和预测系统进行的集成模型实验中,研究了由Biome-BGC,LPJ和CASA模拟的陆地生态系统中的碳储量及其相对平衡。我们开发了用于诊断生态系统模型的层次结构框架,以将模拟的生物地球化学分为一系列功能层,并依次检查其特征。分析表明,Biome-BGC中的模拟生物量通常比LPJ或CASA高2至3倍。这种差异主要是由模型参数和调节生物量周转率的算法差异引起的。在温带/潮湿气候地区,生物群落-BGC中生物质的平均停留时间估计为40-80年,而在CASA和LPJ中,生物质的平均停留时间大多在5至30年之间变化。在模拟的土壤碳中也发现了很大范围的值。在寒冷地区,Biome-BGC和LPJ中土壤碳的平均停留时间类似于200年,随着温度的升高,碳的平均停留时间以10 yr C-1的速率迅速降低。由于没有在CASA中模拟长期土壤碳库,因此其相应的平均停留时间仅为10-20年左右,并且对温度的敏感性较低。影响模拟生态系统碳平衡的另一个关键因素是由野火引起的干扰,为此,模型之间的算法会有所不同。由于稳定状态下的火灾排放量受到净生态系统产量(NEP)的平衡,因此NEP的大小和空间模式也存在很大差异。模型的旋转加速算法可能会留下轻微的碳失衡,这会增加估计碳源或碳汇的不确定性。尽管这些结果仅基于测试的模型版本得出,但是开发的方法仍有可能用于其他模型练习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号