...
首页> 外文期刊>Global change biology >A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing
【24h】

A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing

机译:空间推断外推冻土的冻土高原苔原的碳通量的空间分析

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most important changes in high-latitude ecosystems in response to climatic warming may be the thawing of permafrost soil. In upland tundra, the thawing of ice-rich permafrost can create localized surface subsidence called thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint) ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes [gross primary production (GPP), ecosystem respiration (R-eco), and net ecosystem exchange (NEE)] relate to ecosystem variables that incorporate the structural and edaphic changes that co-occur with permafrost thaw and thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling. For both spatially extensive measurements made intermittently during the peak growing season and intensive measurements made over the entire growing season, ecosystem variables including degree of surface subsidence, thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the 'best' predictors of GPP, R-eco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature, moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.
机译:响应气候变暖,高纬度生态系统最重要的变化之一可能是永久冻土的融化。在高寒冻原上,富含冰的永久冻土的融化会产生称为热喀斯特的局部地面沉降,这可能会改变土壤环境并影响生态系统的碳释放和吸收。我们在阿拉斯加苔原建立了中间规模(在点室测量和涡度协方差足迹之间的等级)生态系统碳通量研究,该地区多年冻土融化和热岩溶发育已经发生了数十年。我们研究的主要目标是研究动态的生态系统碳通量[初级生产总值(GPP),生态系统呼吸(R-eco)和净生态系统交换(NEE)]与包含结构变化和生态变化的生态系统变量之间的关系。与多年冻土融化和热岩溶发展同时发生。然后,我们检查了这些测得的生态系统碳通量如何响应规模扩大。对于高峰生长期间断进行的空间广泛测量和整个生长期进行的密集测量,在混合模型选择程序中选择包括地表沉降程度,解冻深度和地上生物量在内的生态系统变量作为“最佳”预测因子GPP,R-eco和NEE。模型中遗漏的变量(通常是自相关的结果)包括土壤温度,湿度和归一化差异植被指数。这些结果表明,结合多年冻土融化的多种效应的结构变化(地面沉降,融化深度,地上生物量)可能是用于估算整个受喀斯特影响的景观的生态系统碳交换的模型的有用组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号