...
首页> 外文期刊>Global change biology >Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records
【24h】

Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records

机译:通过长期分水岭记录的分析揭示温度对森林氮循环的直接影响

获取原文
获取原文并翻译 | 示例
           

摘要

The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N losses often appear to vary with seasonality in hydrology and plant demand, while exports over longer periods are thought to be associated with increasing rates of anthropogenic N deposition. We analyzed long-term (21-32 years) time series of climate and stream and atmospheric chemistry from two temperate deciduous forest watersheds in the southeastern USA to understand the sensitivity of internal forest N cycles to climate variation and atmospheric deposition. We evaluated the time series with a simple analytical model that incorporates key biotic constraints and mechanisms of N limitation and cycling in plant-soil systems. Through maximum likelihood analysis, we derive biologically realistic estimates of N mineralization and its temperature sensitivity (Q(10)). We find that seasonality and long-term trends in stream nitrate (NO3) concentrations can in large part be explained by the dynamics of internal biological cycling responding to climate rather than external forcing from atmospheric chemistry. In particular, our model analysis suggests that much of the variation in N cycling in these forests results from the response of microbial activity to temperature, causing NO3 losses to peak in the growing season and to accelerate with recent warming. Extrapolation of current trends in temperature and N deposition suggests that the upturn in temperature may increase future N export by greater than threefold more than from increasing deposition, revealing a potential direct effect of anthropogenic warming on terrestrial N cycles.
机译:微生物将有机氮(N)转化为植物可利用形式是决定全球森林中植物生长和碳固存的关键决定因素。在温带地区,微生物活动与温度变化相关,但在生态系统一级,微生物氮的矿化作用似乎在确定氮流失模式中起次要作用。恰恰相反,氮素流失似乎经常随水文学和植物需求的季节性而变化,而长期出口则被认为与人为氮素沉积速率的增加有关。我们分析了美国东南部两个温带落叶林分水岭的长期(21-32年)气候,河流和大气化学时间序列,以了解内部森林N循环对气候变化和大气沉积的敏感性。我们使用简单的分析模型评估了时间序列,该模型结合了关键的生物限制因素以及氮素限制和植物-土壤系统循环的机制。通过最大似然分析,我们得出N矿化及其温度敏感性的生物现实估计(Q(10))。我们发现,硝酸盐(NO3)浓度的季节性和长期趋势在很大程度上可以由内部生物循环对气候的响应而不是大气化学的外部强迫来解释。特别是,我们的模型分析表明,这些森林中氮循环的大部分变化是由于微生物活动对温度的响应所致,导致NO3的损失在生长期达到峰值,并随着近期变暖而加速。对温度和氮沉积物当前趋势的推断表明,温度上升可能使未来氮素的出口量比沉积物增加量增加三倍以上,这揭示了人为变暖对陆地氮循环的潜在直接影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号