...
首页> 外文期刊>Global change biology >Interpreting diel hysteresis between soil respiration and temperature
【24h】

Interpreting diel hysteresis between soil respiration and temperature

机译:解释土壤呼吸和温度之间的diel滞后

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a function of soil temperature. Both biological and physical explanations have been suggested for hysteresis patterns, and there is currently no consensus on their causes or how such data should be analyzed to interpret the sensitivity of respiration to temperature. We used a one-dimensional soil CO2 and heat transport model based on physical first principles to demonstrate a theoretical basis for lags between surface flux and soil temperatures. Using numerical simulations, we demonstrated that diel phase lags between surface flux and soil temperature can result from heat and CO2 transport processes alone. While factors other than temperature that vary on a diel basis, such as carbon substrate supply and atmospheric CO2 concentration, can additionally alter lag times and hysteresis patterns to varying degrees, physical transport processes alone are sufficient to create hysteresis. Therefore, the existence of hysteresis does not necessarily indicate soil respiration is influenced by photosynthetic carbon supply. We also demonstrated how lags can cause errors in Q(10) values calculated from regressions of surface flux and soil temperature measured at a single depth. Furthermore, synchronizing surface flux and soil temperature to account for transport-related lags generally does not improve Q(10) estimation. In order to calculate the sensitivity of soil respiration to temperature, we suggest using approaches that account for the gradients in temperature and production existing within the soil. We conclude that consideration of heat and CO2 transport processes is a requirement to correctly interpret diel soil respiration patterns.
机译:近年来,自动土壤呼吸室的使用越来越多,这表明土壤呼吸与温度之间存在复杂的diel关系,这种关系在较不频繁的测量中并不明显。土壤表面通量经常与土壤温度滞后数小时,当绘制表面通量作为土壤温度的函数时,会导致半椭圆磁滞回线。对于滞后模式,已经提出了生物学和物理解释,目前尚未就其原因或如何分析此类数据以解释呼吸对温度的敏感性达成共识。我们使用了基于物理第一性原理的一维土壤CO2和热传输模型,以证明地表通量与土壤温度之间的滞后性的理论基础。使用数值模拟,我们证明了表面热通量和土壤温度之间的diel相滞可能仅由热和CO2传输过程引起。除了温度以外,其他因素(例如,碳基材的供应量和大气中的CO2浓度)也会发生变化,而滞后时间和磁滞模式也会在不同程度上发生变化,但仅通过物理传输过程就足以产生磁滞。因此,磁滞的存在并不一定表示土壤呼吸受光合作用碳供应的影响。我们还演示了滞后如何导致Q(10)值的误差,该值是根据在单个深度处测得的表面通量和土壤温度的回归计算得出的。此外,同步表面通量和土壤温度以解决与运输相关的滞后通常不会改善Q(10)估计。为了计算土壤呼吸对温度的敏感性,我们建议使用考虑土壤中存在的温度和产量梯度的方法。我们得出结论,考虑热量和CO2的运输过程是正确解释diel土壤呼吸模式的必要条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号