...
首页> 外文期刊>Global change biology >Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape.
【24h】

Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape.

机译:水文和生物地球化学方法控制农业景观中一氧化二氮通量的时间和大小。

获取原文
获取原文并翻译 | 示例
           

摘要

Anticipated increases in precipitation intensity due to climate change may affect hydrological controls on soil N2O fluxes, resulting in a feedback between climate change and soil greenhouse gas emissions. We evaluated soil hydrologic controls on N2O emissions during experimental water table fluctuations in large, intact soil columns amended with 100 kg ha-1 KNO3-N. Soil columns were collected from three landscape positions that vary in hydrological and biogeochemical properties (N=12 columns). We flooded columns from bottom to surface to simulate water table fluctuations that are typical for this site, and expected to increase given future climate change scenarios. After the soil was saturated to the surface, we allowed the columns to drain freely while monitoring volumetric soil water content, matric potential and N2O emissions over 96 h. Across all landscape positions and replicate soil columns, there was a positive linear relationship between total soil N and the log of cumulative N2O emissions (r2=0.47; P=0.013). Within individual soil columns, N2O flux was a Gaussian function of water-filled pore space (WFPS) during drainage (mean r2=0.90). However, instantaneous maximum N2O flux rates did not occur at a consistent WFPS, ranging from 63% to 98% WFPS across landscape positions and replicate soil columns. In contrast, instantaneous maximum N2O flux rates occurred within a narrow range (-1.88 to -4.48 kPa) of soil matric potential that approximated field capacity. The relatively consistent relationship between maximum N2O flux rates and matric potential indicates that water filled pore size is an important factor affecting soil N2O fluxes. These data demonstrate that matric potential is the strongest predictor of the timing of N2O fluxes across soils that differ in texture, structure and bulk density.
机译:气候变化导致的降水强度增加可能会影响土壤N 2 O通量的水文控制,从而导致气候变化与土壤温室气体排放之间的反馈。我们评估了用100 kg ha -1 KNO 3 2 O排放的水文控制> -N。从水文和生物地球化学性质各不相同的三个景观位置收集土壤柱( N = 12柱)。我们从底部到地面淹没了圆柱,以模拟该地点典型的地下水位波动,并且在未来气候变化的情况下,预计波动还会增加。在土壤浸透到表面后,我们允许色谱柱自由排水,同时监测96小时内的土壤体积水含量,基质势和N 2 O排放。在所有景观位置和重复的土壤柱上,土壤总氮与累积N 2 O排放量( r 2 = 0.47; P = 0.013)。在各个土壤柱中,N 2 O通量是排水过程中充满水的孔隙空间(WFPS)的高斯函数(平均值 r 2 = 0.90)。然而,在一致的WFPS下,瞬时最大N 2 O通量率没有发生,在整个景观位置和重复土壤柱上,其瞬时WFPS范围为63%至98%。相反,瞬时最大N 2 O通量速率出现在近似于田间持水量的狭窄土壤基质势(-1.88至-4.48 kPa)内。最大N 2 O通量速率与基质势之间的相对一致关系表明,充水孔隙大小是影响土壤N 2 O的重要因素通量。这些数据表明,基质势是在质地,结构和堆积密度不同的土壤上N 2 通量变化时间的最强预测因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号